TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Farnetane, Lucas S. A1 - Pöttgen, Philipp A1 - Vergé, Angela A1 - Pelz, Peter F. T1 - Multicriterial design of a hydrostatic transmission system via mixed-integer programming T2 - Operations Research Proceedings 2015 N2 - In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system’s reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system. Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - https://doi.org/10.1007/978-3-319-42902-1_41 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 301 EP - 307 PB - Springer CY - Cham ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Bouffier, Anna A1 - Gaedicke, Sonja A1 - Leicht-Scholten, Carmen T1 - Diversifying engineering education: a transdisciplinary approach from RWTH Aachen University T2 - Strategies for increasing diversity in engineering majors and careers N2 - Engineers and therefore engineering education are challenged by the increasing complexity of questions to be answered globally. The education of future engineers therefore has to answer with curriculums that build up relevant skills. This chapter will give an example how to bring engineering and social responsibility successful together to build engineers of tomorrow. Through the integration of gender and diversity perspectives, engineering research and teaching is expanded with new perspectives and contents providing an important potential for innovation. Aiming on the enhancement of engineering education with distinctive competencies beyond technical expertise, the teaching approach introduced in the chapter represents key factors to ensure that coming generations of engineers will be able to meet the requirements and challenges a changing globalized world holds for them. The chapter will describe how this approach successfully has been implemented in the curriculum in engineering of a leading technical university in Germany. Y1 - 2017 SN - 9781522522126 U6 - https://doi.org/10.4018/978-1-5225-2212-6.ch010 SP - 201 EP - 235 PB - IGI Global CY - Hershey, USA ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Innovation and Diversity : Integrating new perspectives into research associations T2 - 12th European Conference on Innovation and Entrepreneurship (ECIE 2017) : Paris, France, 21-22 September 2017 N2 - The link between diversity and innovation is broadly discussed in the context of research and innovation processes. Many institutions and enterprises, specifically in commerce, have already tried to establish sustainable diversity management concepts, in order to increase the diversity of their workforce in addition to establishing a corporate culture of openness. Alongside the creation of a working place where different experiences and skills are valued equally, the entrepreneurial intention is to transfer diversity into economically relevant advantages. Taking into account the potential of diversity in research and innovation processes, the project “Diversity- and Innovation Management” was incorporated within a large interdisciplinary research Cluster. The project’s purpose was to study the context between diversity and innovation in research associations and to later develop a customised management concept into an interdisciplinary research Cluster on integrative production technology with full integration. The challenge of such research associations lays in an organisational structure which is often described as being decentralised. Researchers coming from different academic disciplines, while having diverse habits, conduct research on large scientific issues and challenges. In addition, these researchers are socialised in different institutions and university chairs. Theses differences in leadership styles, business cultures and organisational strategies, follow into their research team work. Taking a closer look into the management of human resources suggests that decentral organised recruitment processes, as well as allocation of human resources, lead to a lacking overview in regard to missing competencies, perspectives and backgrounds in research networks. These circumstances are comparable to big corporate groups. While developing a management concept for research associations, these characteristics must be considered. To ensure this, the project follows a human-centred approach, which considers top-down, as well as bottom-up perspectives. This paper presents the applied mixed-method approach in the scientific issue described above. In the frame of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” research results based on quantitative, as well as qualitative studies, were presented as an application example. This paper provides a new perspective on the innovation and diversity context. Against the background of complex research organisations, the development approach of a management concept is particularly interesting. KW - Innovation KW - Diversity KW - Innovation Management KW - Diversity Management KW - Leadership Y1 - 2017 SN - 978-1-911218-54-8 SP - 767 EP - 776 ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Sharma, Mamta Rameshwarlal A1 - Bleck, Wolfgang A1 - Leicht-Scholten, Carmen ED - Farn, C. K. T1 - Innovation through Diversity - Development of a Diversity and Innovation management concept T2 - International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan N2 - Acknowledging that a diverse workforce could be a potential source of innovation, the current research deals with the fine details of why diversity management is central to achieving innovation in heterogeneous research groups and how this could be effectively realized in an organization. The types of heterogeneities addressed mainly include gender, qualification, academic discipline and intercultural perspectives. The type of organization being dealt with in this work is a complex association of research institutes at a technical university in Germany (RWTH Aachen University), namely a 'Cluster of Excellence', whereby several institutes of the university work collaboratively in different sub-projects. The 'Cluster of Excellence' is a part of the 'Excellence Initiative' of the German federal and state governments German Research Foundation (DFG) and German Council of Science and Humanities, with the ultimate aim of promoting cutting-edge research. To support interdisciplinary collaboration and thus the performance of the cluster, the development of a diversity and innovation management concept is presently in the conceptual phase and will be described in the frame of this paper. The 3-S-Diversity Model, composed of the three elements: skills, structure and strategy, serves as a basis for the development of the concept. The proposed concept consists of six phases; the first two phases lay the ground work by developing an understanding of the status quo on the forms of diversity in the Cluster of Excellence, the type of organizational structure of the member institutes and the varieties of specialist work cultures of the same. The third and the fourth phases build up on this foundation by means of qualitative and quantitative studies. While the third phase deals with the sensitization of the management level to the close connection between diversity and innovation; the need to manage them thereafter and find tailor-made methods of doing so, the fourth phase shall mainly focus on the mindset of the employees in this regard. The fifth phase shall consolidate the learnings and the ideas developed in the course of the first four phases into an implementable strategy. The ultimate phase shall be the implementation of this concept in the Cluster. The first three phases have been accomplished successfully and the preliminary results are already available. Y1 - 2017 SN - 2218-6387 SP - Panel C PB - Kuang Hui Chiu CY - Osaka ER - TY - JOUR A1 - Steuer-Dankert, Linda A1 - Sharma, Mamta Rameshwarlal A1 - Bleck, Wolfgang A1 - Leicht-Scholten, Carmen T1 - Diversity and innovation management in large research groups JF - International Journal of Innovation Management N2 - Contemporary research appreciates a diverse workforce as a potential source of innovation. Researchers explore the fine details of why diversity management is central for generating innovations in heterogeneous research groups and how it could be effectively implemented into organizations. Complex research associations that discuss topics with a high impact on society increasingly address the necessity of establishing a diverse workforce to confront the challenges of tomorrow. Characterized by complex management structures as well as hierarchies, research associations have not been a subject of investigation until now. For this reason, the presented research project aims to develop a diversity and innovation management strategy with the ultimate goal of inducing change in the corporate culture. The proposed approach consisted of six phases; the first two phases investigated the status quo of diversity in the existing organizational structures of member institutes and the variety of particular working cultures within the research association. The third and the fourth phases utilized qualitative and quantitative studies. The third phase focused on the connection of management level to diversity and innovation, and the need for diversity and innovation management, and tailor-made methods of implementing them. The first three phases have been accomplished successfully; preliminary results are already available. The fourth phase will mainly focus on exploring the mind-set of the employees. The fifth phase will consolidate the findings in the first four phases into an implementable strategy. The final phase will address the implementation of this strategy into the organization. Phases 4 to 6 have not yet been undertaken KW - diversity management KW - innovation management KW - research association KW - change management KW - engineering Y1 - 2017 SN - 1757-5877 VL - 5 IS - 2 SP - 49 EP - 72 ER - TY - CHAP A1 - Czarnecki, Christian A1 - Dietze, Christian ED - Maedche, Alexander ED - vom Brocke, Jan ED - Hevner, Alan T1 - Domain-Specific reference modeling in the telecommunications industry T2 - DESRIST 2017: Designing the Digital Transformation N2 - The telecommunications industry is currently going through a major transformation. In this context, the enhanced Telecom Operations Map (eTOM) is a domain-specific process reference model that is offered by the industry organization TM Forum. In practice, eTOM is well accepted and confirmed as de facto standard. It provides process definitions and process flows on different levels of detail. This article discusses the reference modeling of eTOM, i.e., the design, the resulting artifact, and its evaluation based on three project cases. The application of eTOM in three projects illustrates the design approach and concrete models on strategic and operational levels. The article follows the Design Science Research (DSR) paradigm. It contributes with concrete design artifacts to the transformational needs of the telecommunications industry and offers lessons-learned from a general DSR perspective. KW - enhanced Telecom Operations Map (eTOM) KW - Process reference model KW - Process design KW - Map (eTOM) Process reference model Process design Telecommunications industry Y1 - 2017 SN - 978-3-319-59144-5 SN - 978-3-319-59143-8 U6 - https://doi.org/10.1007/978-3-319-59144-5_19 N1 - Designing the Digital Transformation 12th International Conference, DESRIST 2017, Karlsruhe, Germany, May 30 - June 1, 2017. SP - 313 EP - 329 PB - Springer CY - Cham ER - TY - BOOK A1 - Czarnecki, Christian A1 - Dietze, Christian T1 - Reference architecture for the telecommunications industry: Transformation of strategy, organization, processes, data, and applications N2 - This book reflects the tremendous changes in the telecommunications industry in the course of the past few decades – shorter innovation cycles, stiffer competition and new communication products. It analyzes the transformation of processes, applications and network technologies that are now expected to take place under enormous time pressure. The International Telecommunication Union (ITU) and the TM Forum have provided reference solutions that are broadly recognized and used throughout the value chain of the telecommunications industry, and which can be considered the de facto standard. The book describes how these reference solutions can be used in a practical context: it presents the latest insights into their development, highlights lessons learned from numerous international projects and combines them with well-founded research results in enterprise architecture management and reference modeling. The complete architectural transformation is explained, from the planning and set-up stage to the implementation. Featuring a wealth of examples and illustrations, the book offers a valuable resource for telecommunication professionals, enterprise architects and project managers alike. KW - Enterprise architecture KW - Enterprise transformation KW - Reference modelling KW - TM Forum KW - Telecommunication Y1 - 2017 SN - 978-3-319-46755-9 (Print) SN - 978-3-319-83578-5 (Print) SN - 978-3-319-46757-3 (PDF) U6 - https://doi.org/10.1007/978-3-319-46757-3 PB - Springer CY - Cham ER - TY - JOUR A1 - Kilic, S. A. A1 - Raatschen, Hans-Jürgen A1 - Körfgen, B. A1 - Apaydin, N. M. A1 - Astaneh-Asl, A. T1 - FE Model of the Fatih Sultan Mehmet Suspension Bridge Using Thin Shell Finite Elements JF - Arabian Journal for Science and Engineering N2 - This paper presents the results of an eigenvalue analysis of the Fatih Sultan Mehmet Bridge. A high-resolution finite element model was created directly from the available design documents. All physical properties of the structural components were included in detail, so no calibration to the measured data was necessary. The deck and towers were modeled with shell elements. A nonlinear static analysis was performed before the eigenvalue calculation. The calculated natural frequencies and corresponding mode shapes showed good agreement with the available measured ambient vibration data. The calculation of the effective modal mass showed that nine modes had single contributions higher than 5 % of the total mass. They were in a frequency range up to 1.2 Hz. The comparison of the results for the torsional modes especially demonstrated the advantage of using thin shell finite elements over the beam modeling approach. KW - Suspension bridge KW - 3D nonlinear finite element model KW - Thin shell finite elements KW - Natural frequency KW - Effective modal mass Y1 - 2017 U6 - https://doi.org/10.1007/s13369-016-2316-y SN - 2191-4281 VL - 42 IS - 3 SP - 1103 EP - 1116 PB - Springer Nature ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Kremers, Alexander A1 - Wagner, Torsten A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring JF - physica status solidi a : applications and materials sciences N2 - A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed. Y1 - 2017 U6 - https://doi.org/10.1002/pssa.201600912 SN - 1862-6319 IS - Early View PB - Wiley-VCH CY - Weinheim ER -