TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard T1 - Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation JF - Journal of Hydraulic Engineering N2 - A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative. Y1 - 2018 U6 - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001485 SN - 0733-9429 N1 - Article number 04018037 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - ERIKA—Early Robotics Introduction at Kindergarten Age JF - Multimodal Technologies Interact N2 - In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human–robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents. Y1 - 2018 U6 - https://doi.org/10.3390/mti2040064 SN - 2414-4088 VL - 2 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schwabedal, Justus T. C. A1 - Sippel, Daniel A1 - Brandt, Moritz D. A1 - Bialonski, Stephan T1 - Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning N2 - Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle. Y1 - 2018 U6 - https://doi.org/10.48550/arXiv.1809.08443 ER - TY - CHAP A1 - Hofmann, Till A1 - Mataré, Victor A1 - Neumann, Tobias A1 - Schönitz, Sebastian A1 - Henke, Christoph A1 - Limpert, Nicolas A1 - Niemueller, Tim A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - Enhancing Software and Hardware Reliability for a Successful Participation in the RoboCup Logistics League 2017 Y1 - 2018 SN - 978-3-030-00308-1 U6 - https://doi.org/10.1007/978-3-030-00308-1_40 N1 - Lecture Notes in Computer Science, vol 11175 SP - 486 EP - 497 PB - Springer CY - Cham ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - CHAP A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries: a short introduction T2 - Biorefineries N2 - The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown. KW - Bioeconomy KW - Biorefinery definitions KW - Introduction KW - Process schemes KW - Renewable resources Y1 - 2018 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - https://doi.org/10.1007/10_2017_4 N1 - (Advances in Biochemical Engineering/Biotechnology book series ; Vol. 166) SP - 1 EP - 11 PB - Springer CY - Cham ER - TY - JOUR A1 - König, Johannes Alexander A1 - Wolf, Martin R. T1 - GHOST: An Evaluated Competence Developing Game for Cybersecurity Awareness Training JF - International Journal on Advances in Security N2 - To train end users how to interact with digital systems is indispensable to ensure a strong computer security. 'Competence Developing Game'-based approaches are particularly suitable for this purpose because of their motivation-and simulation-aspects. In this paper the Competence Developing Game 'GHOST' for cybersecurity awareness trainings and its underlying patterns are described. Accordingly, requirements for an 'Competence Developing Game' based training are discussed. Based on these requirements it is shown how a game can fulfill these requirements. A supplementary game interaction design and a corresponding evaluation study is shown. The combination of training requirements and interaction design is used to create a 'Competence Developing Game'-based training concept. A part of these concept is implemented into a playable prototype that serves around one hour of play respectively training time. This prototype is used to perform an evaluation of the game and training aspects of the awareness training. Thereby, the quality of the game aspect and the effectiveness of the training aspect are shown. Y1 - 2018 SN - 1942-2636 VL - 11 IS - 3 & 4 SP - 274 EP - 287 PB - IARIA Journals ER - TY - CHAP A1 - Alhwarin, Faraj A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - CRVM: Circular Random Variable-based Matcher - A Novel Hashing Method for Fast NN Search in High-dimensional Spaces T2 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2018 Y1 - 2018 SN - 978-989-758-276-9 U6 - https://doi.org/10.5220/0006692802140221 SP - 214 EP - 221 ER - TY - CHAP A1 - Alhwarin, Faraj A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Optimized KinectFusion Algorithm for 3D Scanning Applications T2 - Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING Y1 - 2018 SN - 978-989-758-278-3 U6 - https://doi.org/10.5220/0006594700500057 SP - 50 EP - 57 ER -