TY - CHAP A1 - Blanke, Tobias A1 - Dring, Bernd A1 - Vontein, Marius A1 - Kuhnhenne, Markus T1 - Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic T2 - 8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden Y1 - 2018 SP - 1 EP - 7 ER - TY - JOUR A1 - Reger, Vitali A1 - Kuhnhenne, Markus A1 - Ebbert, Thiemo A1 - Hachul, Helmut A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Nutzung erneuerbarer Energien durch thermische Aktivierung von Komponenten aus Stahl JF - Stahlbau N2 - Die Versorgung von Neubauten soll möglichst weitgehend unabhängig von fossilen Energieträgern erfolgen. Erneuerbare Energien spielen dafür eine gewichtige Rolle. Eine gute Möglichkeit, erneuerbare Energien ohne viel zusätzlichen Aufwand nutzbar zu machen, ist, bereits vorhandenen Komponenten im Gebäude zusätzliche Funktionen zu geben. Hier kann bspw. die Fassade oder das Dach solarthermisch aktiviert oder durch Fotovoltaikmodule ergänzt werden. Auch Tiefgründungen können neben der statischen Funktion noch eine geothermische Funktion zur Aufnahme oder Abgabe von Wärme erhalten. Neben der Erzeugung bietet sich auch für die Verteilung der Wärme oder Kälte im Gebäude die Integration in Bauteile an. Hier kann bspw. der Boden durch eine Fußbodenheizung oder die Decke durch Deckenstrahlplatten aktiviert werden. Im Rahmen der Veröffentlichung wird auf die thermische Aktivierung von Stahlkomponenten eingegangen. Es wird eine Lösung vorgestellt, die vorgehängte hinterlüftete Stahlfassade (VHF) solarthermisch zu aktivieren. Außerdem werden zwei Möglichkeiten zur geothermischen Aktivierung von Tiefgründungen mittels Stahlpfählen gezeigt. Zuletzt wird ein System zur thermischen Aktivierung von Stahltrapezprofilen an der Decke erläutert, welches Wärme zuführen oder bei Bedarf abführen kann. Y1 - 2020 U6 - https://doi.org/10.1002/stab.202000031 SN - 1437-1049 VL - 2020 IS - Volume 89, Issue 6512-519 SP - 512 EP - 519 PB - Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - JOUR A1 - Blanke, Tobias A1 - Reger, Vitali A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Kuhnhenne, Markus T1 - Koaxiale Stahlenergiepfähle JF - Stahlbau N2 - Ein entscheidender Teil der Energiewende ist die Wärmewende im Gebäudesektor. Ein Schlüsselelement sind hier Wärmepumpen. Diese benötigen eine Wärmequelle, der sie Energie entziehen können, um sie auf ein höheres Temperaturniveau zu transformieren. Diese Wärmequelle kann bspw. das Erdreich sein, dessen Wärme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpfähle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bezüglich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepfähle bieten neben der Wärmegewinnung weitere Vorteile, da sie auch eine statische Funktion übernehmen und rückstandsfrei zurückgebaut werden können. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepfähle in zwei verschiedenen Längen mit vorhandenen gängigen Erdsonden verglichen werden können. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 % und 148 % der Stahlenergiepfähle gegenüber dem Stand der Technik abhängig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von über 100 %. Es lässt sich also signifikante Erdsondenlänge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt. Y1 - 2021 VL - 90. 2021 IS - 6 SP - 417 EP - 424 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus A1 - Kaufhold, O. T1 - High Concentration Solar Collectors T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Solar dish KW - Solar concentration Y1 - 2022 SN - 978-0-12-819734-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00058-3 SP - 198 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schwager, Christian A1 - Teixeira Boura, Cristiano José A1 - Flesch, Robert A1 - Alexopoulos, Spiros A1 - Herrmann, Ulf T1 - Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation T2 - AIP Conference Proceedings Y1 - 2019 SN - 978-0-7354-1866-0 U6 - https://doi.org/10.1063/1.5117566 VL - 2126 IS - 1 SP - 030054-1 EP - 030054-8 ER - TY - JOUR A1 - Reger, Vitali A1 - Kuhnhenne, Markus A1 - Hachul, Helmut A1 - Döring, Bernd A1 - Blanke, Tobias A1 - Göttsche, Joachim T1 - Plusenergiegebäude 2.0 in Stahlleichtbauweise JF - Stahlbau Y1 - 2019 U6 - https://doi.org/10.1002/stab.201900034 SN - 1437-1049 (E-journal), 0038-9145 (print) VL - 88 IS - 6 SP - 522 EP - 528 PB - Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Gorzalka, Philip A1 - Dahlke, Dennis A1 - Göttsche, Joachim A1 - Israel, Martin A1 - Patel, Dhruvkumar A1 - Prahl, Christoph A1 - Schmiedt, Jacob Estevam A1 - Frommholz, Dirk A1 - Hoffschmidt, Bernhard A1 - Linkiewicz, Magdalena T1 - Building Tomograph–From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input T2 - EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria Y1 - 2018 ER - TY - JOUR A1 - Sattler, Johannes, Christoph A1 - Röger, Marc A1 - Schwarzbözl, Peter A1 - Buck, Reiner A1 - Macke, Ansgar A1 - Raeder, Christian A1 - Göttsche, Joachim T1 - Review of heliostat calibration and tracking control methods JF - Solar Energy N2 - Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun’s position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented. Y1 - 2020 U6 - https://doi.org/10.1016/j.solener.2020.06.030 VL - 207 SP - 110 EP - 132 PB - Elsevier CY - Amsterdam ER -