TY - JOUR A1 - Bäcker, Matthias A1 - Koch, Claudia A1 - Eiben, Sabine A1 - Geiger, Fania A1 - Eber, Fabian A1 - Gliemann, Hartmut A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors JF - Sensors and Actuators B: Chemical N2 - The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips. Y1 - 2017 U6 - https://doi.org/10.1016/j.snb.2016.07.096 SN - 0925-4005 VL - 238 SP - 716 EP - 722 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Delle, L. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Zang, Werner A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Electrochemical sensor array for bioprocess monitoring JF - Electrochimica Acta (2011) Y1 - 2011 VL - 56 IS - 26 SP - 9673 EP - 9678 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Beging, Stefan A1 - Biselli, Manfred A1 - Poghossian, Arshak A1 - Wang, J. A1 - Zang, Werner A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Concept for a solid-state multi-parameter sensor system for cell-culture monitoring JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6107 EP - 6112 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Buß, G. A1 - Ecken, H. A1 - Winkels, S. A1 - Schöning, Michael Josef A1 - Lüth, H. A1 - Schultze, J. W. T1 - Galvanic modifications of multifunctional silicon-based microelectrode arrays JF - Electrochemical technology applications in electronics : proceedings of the third international symposium / [International Symposium on Electrochemical Technology Applications in Electronics, held during October 20 - 22, 1999, Honolulu, Hawaii]. Electrodeposition Division. Ed.: L. T. Romankiw Y1 - 2000 SN - 1566772575 N1 - International Symposium on Electrochemical Technology Applications in Electronics ; (3, 1999, Honolulu, Hawaii) ; Proceedings volume // Electrochemical Society ; 99-34 SP - 209 EP - 215 PB - Electrochemical Society CY - Pennington, NJ ER - TY - JOUR A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Holler, Stefan T1 - Analysis of cylindrical granular material silos under seismic excitation JF - Buildings N2 - Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account. KW - granular silo KW - earthquake engineering KW - hypoplasticity KW - nonlinear transient analyses Y1 - 2017 U6 - https://doi.org/10.3390/buildings7030061 SN - 2075-5309 VL - 7 IS - 3 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Salatic, Ratko T1 - Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading JF - Bulletin of Earthquake Engineering Y1 - 2019 U6 - https://doi.org/10.1007/s10518-019-00602-7 SN - 1573-1456 VL - 17 SP - 3397 EP - 3422 PB - Springer CY - Berlin ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Kubalski, Thomas A1 - Klinkel, Sven T1 - Masonry infilled reinforced concrete frames under horizontal loading T1 - Stahlbetonrahmen mit Ausfachungen aus Mauerwerk unter horizontalen Belastungen JF - Mauerwerk N2 - The behaviour of infilled reinforced concrete frames under horizontal load has been widely investigated, both experimentally and numerically. Since experimental tests represent large investments, numerical simulations offer an efficient approach for a more comprehensive analysis. When RC frames with masonry infill walls are subjected to horizontal loading, their behaviour is highly non-linear after a certain limit, which makes their analysis quite difficult. The non-linear behaviour results from the complex inelastic material properties of the concrete, infill wall and conditions at the wall-frame interface. In order to investigate this non-linear behaviour in detail, a finite element model using a micro modelling approach is developed, which is able to predict the complex non-linear behaviour resulting from the different materials and their interaction. Concrete and bricks are represented by a non-linear material model, while each reinforcement bar is represented as an individual part installed in the concrete part and behaving elasto-plastically. Each brick is modelled individually and connected taking into account the non-linearity of a brick mortar interface. The same approach is followed using two finite element software packages and the results are compared with the experimental results. The numerical models show a good agreement with the experiments in predicting the overall behaviour, but also very good matching for strength capacity and drift. The results emphasize the quality and the valuable contribution of the numerical models for use in parametric studies, which are needed for the derivation of design recommendations for infilled frame structures. Y1 - 2016 U6 - https://doi.org/10.1002/dama.201600703 SN - 1437-1022 VL - 20 IS - 4 SP - 305 EP - 312 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - https://doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Burmistrova, Natalia A. A1 - Soboleva, Polina M. A1 - Monakhova, Yulia T1 - Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication? JF - Journal of Pharmaceutical and Biomedical Analysis N2 - The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares – discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA. KW - IR spectroscopy KW - Heparin KW - Authenticity KW - Principal component analysis KW - Soft independent modeling of class analogy Y1 - 2021 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2020.113811 VL - 194 IS - Article number: 113811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Burkhardt, Klaus A1 - Schwarz, Sonja A1 - Pan, Chengrui A1 - Stelter, Felix A1 - Kotliar, Konstantin A1 - Eynatten, Maxilian von A1 - Sollinger, Daniel A1 - Lanzl, Ines A1 - Heemann, Uwe A1 - Baumann, Marcus T1 - Myeloid-related protein 8/14 complex describes microcirculatory alterations in patients with type 2 diabetes and nephropathy JF - Cardiovascular Diabetology Y1 - 2009 SN - 1475-2840 VL - 8 IS - 10 SP - 1 EP - 8 PB - - ER -