TY - JOUR A1 - Leingartner, Max A1 - Maurer, Johannes A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels JF - Journal of Field Robotics N2 - Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search. Y1 - 2016 U6 - https://doi.org/10.1002/rob.21611 SN - 1556-4967 VL - 33 IS - 8 SP - 1037 EP - 1057 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Leingartner, Max A1 - Maurer, Johannes A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - Evaluation of sensors and mapping approaches for disasters in tunnels T2 - IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden Y1 - 2013 SN - 978-1-4799-0879-0 SP - 1 EP - 7 ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_3 N1 - Lecture Notes in Computer Science ; 9513 SP - 31 EP - 43 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander ED - Almeida, Luis T1 - Fawkes for the RoboCup Logistics League T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_31 N1 - Lecture Notes in Computer Science ; 9513 SP - 365 EP - 373 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results JF - International Journal of Human-Computer Studies N2 - Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence. KW - Gamification KW - Virtual reality KW - Assembly KW - User study KW - Level system Y1 - 2022 U6 - https://doi.org/10.1016/j.ijhcs.2022.102854 SN - 1071-5819 VL - 165 IS - Art. No. 102854 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamified Virtual Reality Training Environment for the Manufacturing Industry T2 - Proceedings of the 2020 19th International Conference on Mechatronics – Mechatronika (ME) N2 - Industry 4.0 imposes many challenges for manufacturing companies and their employees. Innovative and effective training strategies are required to cope with fast-changing production environments and new manufacturing technologies. Virtual Reality (VR) offers new ways of on-the-job, on-demand, and off-premise training. A novel concept and evaluation system combining Gamification and VR practice for flexible assembly tasks is proposed in this paper and compared to existing works. It is based on directed acyclic graphs and a leveling system. The concept enables a learning speed which is adjustable to the users’ pace and dynamics, while the evaluation system facilitates adaptive work sequences and allows employee-specific task fulfillment. The concept was implemented and analyzed in the Industry 4.0 model factory at FH Aachen for mechanical assembly jobs. Y1 - 2020 U6 - https://doi.org/10.1109/ME49197.2020.9286661 N1 - 2020 19th International Conference on Mechatronics – Mechatronika (ME), Prague, Czech Republic, December 2–4, 2020 SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Mataré, Victor A1 - Schiffer, Stefan A1 - Ferrein, Alexander ED - Steinbauer, Gerald ED - Ferrein, Alexander T1 - golog++ : An integrative system design T2 - CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018 Y1 - 2019 SN - 1613-0073 SP - 29 EP - 35 ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - https://doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV), July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Cheng, Chi-Tsun A1 - Wollert, Jörg A1 - Chen, Xi A1 - Fapojuwo, Abraham O. T1 - Guest Editorial : Circuits and Systems for Industry X.0 Applications JF - IEEE Journal on Emerging and Selected Topics in Circuits and Systems Y1 - 2023 U6 - https://doi.org/10.1109/JETCAS.2023.3278843 SN - 2156-3357 (Print) SN - 2156-3365 (Online) VL - 13 SP - 457 EP - 460 PB - IEEE CY - New York ET - 2 ER - TY - CHAP A1 - Niemueller, Tim A1 - Neumann, Tobias A1 - Henke, Christoph A1 - Schönitz, Sebastian A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - Improvements for a robust production in the RoboCup logistics league 2016 T2 - RoboCup 2016: Robot World Cup XX. RoboCup 2016. Y1 - 2017 SN - 978-3-319-68792-6 U6 - https://doi.org/10.1007/978-3-319-68792-6_49 SP - 589 EP - 600 PB - Springer CY - Cham ER -