TY - JOUR A1 - Schwager, Christian A1 - Flesch, Robert A1 - Schwarzbözl, Peter A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José T1 - Advanced two phase flow model for transient molten salt receiver system simulation JF - Solar Energy N2 - In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. KW - Molten salt solar tower KW - Molten salt receiver system KW - Dynamic simulation KW - Two-phase modelling KW - Transient flux distribution Y1 - 2022 U6 - https://doi.org/10.1016/j.solener.2021.12.065 SN - 0038-092X (print) SN - 1471-1257 (online) VL - 232 SP - 362 EP - 375 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleefeld, Andreas A1 - Zimmermann, M. ED - Constanda, Christian ED - Bodmann, Bardo E.J. ED - Harris, Paul J. T1 - Computing Elastic Interior Transmission Eigenvalues JF - Integral Methods in Science and Engineering N2 - An alternative method is presented to numerically compute interior elastic transmission eigenvalues for various domains in two dimensions. This is achieved by discretizing the resulting system of boundary integral equations in combination with a nonlinear eigenvalue solver. Numerical results are given to show that this new approach can provide better results than the finite element method when dealing with general domains. Y1 - 2022 SN - 978-3-031-07171-3 U6 - https://doi.org/10.1007/978-3-031-07171-3_10 N1 - Corresponding author: Andreas Kleefeld SP - 139 EP - 155 PB - Birkhäuser CY - Cham ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Analysis and computation of the transmission eigenvalues with a conductive boundary condition JF - Applicable Analysis N2 - We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber–Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown. KW - Boundary integral equations KW - Inverse spectral problem KW - Conductive boundary condition KW - Transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1789598 SN - 1563-504X VL - 101 IS - 6 SP - 1880 EP - 1895 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Niedermeier, Jana A1 - Penner, Crystal A1 - Usherovich, Samuel A1 - Bélanger-Champagne, Camille A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Optical Fibers as Dosimeter Detectors for Mixed Proton/Neutron Fields - A Biological Dosimeter JF - electronics N2 - In recent years, proton therapy has gained importance as a cancer treatment modality due to its conformality with the tumor and the sparing of healthy tissue. However, in the interaction of the protons with the beam line elements and patient tissues, potentially harmful secondary neutrons are always generated. To ensure that this neutron dose is as low as possible, treatment plans could be created to also account for and minimize the neutron dose. To monitor such a treatment plan, a compact, easy to use, and inexpensive dosimeter must be developed that not only measures the physical dose, but which can also distinguish between proton and neutron contributions. To that end, plastic optical fibers with scintillation materials (Gd₂O₂S:Tb, Gd₂O₂S:Eu, and YVO₄:Eu) were irradiated with protons and neutrons. It was confirmed that sensors with different scintillation materials have different sensitivities to protons and neutrons. A combination of these three scintillators can be used to build a detector array to create a biological dosimeter. KW - biological dosimeter KW - Bragg peak KW - relative dosimetry KW - optical fibers KW - proton therapy KW - protons KW - neutrons Y1 - 2023 U6 - https://doi.org/10.3390/electronics12020324 SN - 2079-9292 N1 - This article belongs to the Special Issue "Applications of Optical Fiber Sensors" VL - 12 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rübbelke, Dirk A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Zobel, Luzy T1 - Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production JF - Data in Brief N2 - Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (Rübbelke, 2022). KW - Energy-intensive industry KW - Steel industry KW - Competitiveness KW - Floor prices KW - Cross border adjustment mechanism Y1 - 2023 U6 - https://doi.org/10.1016/j.dib.2023.108907 SN - 2352-3409 VL - 47 IS - Article 108907 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haeger, Gerrit A1 - Grankin, Alina A1 - Wagner, Michaela T1 - Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology JF - Applied Research N2 - Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems. KW - aspergillus KW - CRISPR/Cas9 KW - filamentous fungi KW - genome engineering Y1 - 2023 U6 - https://doi.org/10.1002/appl.202200106 SN - 2702-4288 IS - Early View SP - 1 EP - 15 PB - Wiley-VCH ER - TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - https://doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bialonski, Stephan A1 - Grieger, Niklas T1 - Der KI-Chatbot ChatGPT: Eine Herausforderung für die Hochschulen JF - Die neue Hochschule N2 - Essays, Gedichte, Programmcode: ChatGPT generiert automatisch Texte auf bisher unerreicht hohem Niveau. Dieses und nachfolgende Systeme werden nicht nur die akademische Welt nachhaltig verändern. Y1 - 2023 U6 - https://doi.org/10.5281/zenodo.7533758 SN - 0340-448X VL - 2023 IS - 1 SP - 24 EP - 27 PB - HLB CY - Bonn ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - https://doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gaigall, Daniel ED - AitSahlia, Farid T1 - Allocating and forecasting changes in risk JF - Journal of risk N2 - We consider time-dependent portfolios and discuss the allocation of changes in the risk of a portfolio to changes in the portfolio’s components. For this purpose we adopt established allocation principles. We also use our approach to obtain forecasts for changes in the risk of the portfolio’s components. To put the approach into practice we present an implementation based on the output of a simulation. Allocation is illustrated with an example portfolio in the context of Solvency II. The quality of the forecasts is investigated with an empirical study. KW - portfolio risk KW - allocation KW - forecast KW - covariance principle KW - conditional expectation principle Y1 - 2023 U6 - https://doi.org/10.21314/JOR.2022.048 SN - 1755-2842 SN - 1465-1211 VL - 25 IS - 3 SP - 1 EP - 24 PB - Infopro Digital Risk CY - London ER -