TY - JOUR A1 - Rabehi, Amine A1 - Garlan, Benjamin A1 - Achtsnicht, Stefan A1 - Krause, Hans-Joachim A1 - Offenhäusser, Andreas A1 - Ngo, Kieu A1 - Neveu, Sophie A1 - Graff-Dubois, Stephanie A1 - Kokabi, Hamid T1 - Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique JF - Sensors N2 - A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding. KW - Lab-on-Chip KW - magnetic sensing KW - frequency mixing KW - superparamagnetic nanoparticles KW - magnetic beads Y1 - 2018 U6 - https://doi.org/10.3390/s18061747 SN - 1424-8220 VL - 18 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim ED - Offenhäusser, Andreas T1 - Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior. KW - magnetic sensors KW - biosensors KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2022 U6 - https://doi.org/10.3390/s22228776 SN - 1424-8220 VL - 22 IS - 22 PB - MDPI CY - Basel ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Neuendorf, Christian A1 - Faßbender, Tobias A1 - Nölke, Greta A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim A1 - Schröper, Florian T1 - Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection JF - Plos One N2 - Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin’s B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0219356 SN - 1932-6203 VL - 14 IS - 7 PB - Plos CY - San Francisco ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Schönenborn, Kristina A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Measurement of the magnetophoretic velocity of different superparamagnetic beads JF - Journal of Magnetism and Magnetic Materials N2 - The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements. KW - magnetophoretic velocity KW - superparamagnetic bead KW - magnetic tweezers KW - magnetic separation KW - magnetic actuation Y1 - 2019 U6 - https://doi.org/10.1016/j.jmmm.2018.10.066 SN - 0304-8853 VL - 477 IS - 1 SP - 244 EP - 248 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Burger, René A1 - Lindner, Simon A1 - Rumpf, Jessica A1 - Do, Xuan Tung A1 - Diehl, Bernd W.K. A1 - Rehahn, Matthias A1 - Monakhova, Yulia A1 - Schulze, Margit T1 - Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin JF - Journal of Pharmaceutical and Biomedical Analysis N2 - Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin’s molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin’s molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems. KW - NMR KW - PLS-regression KW - Molecular weight determination KW - Chemometrics KW - Biomass Y1 - 2022 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2022.114649 VL - 212 IS - Article number: 114649 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Pohen, Gino D. A1 - Dicke, Max D. A1 - Paulsen, Svea A1 - Krafft, Simone A1 - Zang, Joachim W. A1 - Fonseca-Zang, Warde A. da A1 - Leite, Athaydes A1 - Kuperjans, Isabel T1 - Challenges and prospects of biogas from energy cane as supplement to bioethanol production JF - Agronomy N2 - Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production. Y1 - 2020 U6 - https://doi.org/10.3390/agronomy10060821 SN - 2073-4395 VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Pourshahidi, Ali Mohammad A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique JF - Sensors N2 - In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles’ nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil’s signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements. KW - frequency mixing magnetic detection KW - magnetic sandwich immunoassay KW - multiparametric immunoassays Y1 - 2019 U6 - https://doi.org/10.3390/s19112599 SN - 1424-8220 VL - 19 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Nambipareechee, Mrinal Murali A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection JF - Sensors N2 - Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible. KW - colorization KW - multiplex detection KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/s21175859 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advanced Nanomaterial-Based Sensors for Biomedical Applications" VL - 21 IS - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Monakhova, Yulia A1 - Soboleva, Polina M. A1 - Fedotova, Elena S. A1 - Musina, Kristina T. A1 - Burmistrova, Natalia A. T1 - Quantum chemical calculations of IR spectra of heparin disaccharide subunits JF - Computational and Theoretical Chemistry N2 - Heparin is a natural polysaccharide, which plays essential role in many biological processes. Alterations in building blocks can modify biological roles of commercial heparin products, due to significant changes in the conformation of the polymer chain. The variability structure of heparin leads to difficulty in quality control using different analytical methods, including infrared (IR) spectroscopy. In this paper molecular modelling of heparin disaccharide subunits was performed using quantum chemistry. The structural and spectral parameters of these disaccharides have been calculated using RHF/6-311G. In addition, over-sulphated chondroitin sulphate disaccharide was studied as one of the most widespread contaminants of heparin. Calculated IR spectra were analyzed with respect to specific structure parameters. IR spectroscopic fingerprint was found to be sensitive to substitution pattern of disaccharide subunits. Vibrational assignments of calculated spectra were correlated with experimental IR spectral bands of native heparin. Chemometrics was used to perform multivariate analysis of simulated spectral data. KW - IR spectroscopy KW - Chemometrics KW - Quantum chemistry KW - Molecular modelling KW - Quality control Y1 - 2022 SN - 2210-271X U6 - https://doi.org/10.1016/j.comptc.2022.113891 VL - 1217 IS - Article number: 113891 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Burmistrova, Natalia A. A1 - Soboleva, Polina M. A1 - Monakhova, Yulia T1 - Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication? JF - Journal of Pharmaceutical and Biomedical Analysis N2 - The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares – discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA. KW - IR spectroscopy KW - Heparin KW - Authenticity KW - Principal component analysis KW - Soft independent modeling of class analogy Y1 - 2021 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2020.113811 VL - 194 IS - Article number: 113811 PB - Elsevier CY - Amsterdam ER -