TY - JOUR A1 - Trapp, Svenja A1 - Lammers, Tom A1 - Engudar, Gokce A1 - Hoehr, Cornelia A1 - Denkova, Antonia G. A1 - Paulßen, Elisabeth A1 - de Kruijff, Robin M. T1 - Membrane-based microfluidic solvent extraction of Ga-68 from aqueous Zn solutions: towards an automated cyclotron production loop JF - EJNMMI Radiopharmacy and Chemistry KW - Microfluidic solvent extraction KW - Ga-68 KW - Cyclotron production KW - Medical radionuclide production KW - Metal contaminants Y1 - 2023 U6 - https://doi.org/10.1186/s41181-023-00195-2 SN - 2365-421X VL - 2023 IS - 8, Article number: 9 SP - 1 EP - 14 PB - Springer Nature ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shalaby, Ahmed A1 - Shasha, Carolyn A1 - Krishnan, Kannan M. A1 - Krause, Hans-Joachim T1 - Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory JF - Nanomaterials N2 - Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory. KW - Magnetic nanoparticles KW - Frequency mixing magnetic detection KW - Langevin theory KW - Micromagnetic simulation KW - Nonequilibrium dynamics Y1 - 2021 SN - 2079-4991 U6 - https://doi.org/10.3390/nano11051257 N1 - This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles VL - 11 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Aliazizi, Fereshteh A1 - Özsoylu, Dua A1 - Bakhshi Sichani, Soroush A1 - Khorshid, Mehran A1 - Glorieux, Christ A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures JF - Micromachines N2 - In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems. KW - chip-based sensor setup KW - aquaculture KW - microfluidics KW - impedance spectroscopy KW - thermometry KW - electrical conductivity of liquids Y1 - 2024 U6 - https://doi.org/10.3390/mi15060755 SN - 2072-666X N1 - This article belongs to the Special Issue "Multisensor Arrays" N1 - Corresponding author: Michael J. Schöning VL - 15 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kurz, Melanie T1 - Der Modell-Roller JF - Form : the making of design Y1 - 2006 SN - 0015-7678 VL - 2006 IS - 209 SP - 64 EP - 72 ER - TY - JOUR A1 - Zhantlessova, Sirina A1 - Savitskaya, Irina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Talipova, Aizhan A1 - Pogrebnjak, Alexander A1 - Digel, Ilya T1 - Correction: Zhantlessova et al. advanced “Green” prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy. Polymers 2022, 14, 3224 JF - Polymers Y1 - 2024 U6 - https://doi.org/10.3390/polym16131802 SN - 2073-4360 N1 - This article belongs to the Special Issue Cellulose Based Composites VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saretzki, Charlotte A1 - Bergmann, Ole A1 - Dahmann, Peter A1 - Janser, Frank A1 - Keimer, Jona A1 - Machado, Patricia A1 - Morrison, Audry A1 - Page, Henry A1 - Pluta, Emil A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Are small airplanes safe with regards to COVID-19 transmission? JF - Journal of Travel Medicine Y1 - 2021 U6 - https://doi.org/10.1093/jtm/taab105 SN - 1708-8305 VL - 28 IS - 7 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Analysis and computation of the transmission eigenvalues with a conductive boundary condition JF - Applicable Analysis N2 - We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber–Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown. KW - Boundary integral equations KW - Inverse spectral problem KW - Conductive boundary condition KW - Transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1789598 SN - 1563-504X VL - 101 IS - 6 SP - 1880 EP - 1895 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bähr, Brigitte T1 - [Gert Hoepner] im Interview zum Thema ; Verpackungspolitik - mehr als Hülle JF - Packaging journal : Technologie, Logistik, Marketing, Produkte Y1 - 2012 SN - 1610-0336 IS - 5 SP - 78 EP - 80 PB - Ella Verlag CY - Hürth ER - TY - JOUR A1 - Kuperjans, Isabel T1 - Exergetische und exergoökonomische Analyse thermischer Prozesse JF - Arbeitsbericht / Institut für Wirtschaftswissenschaften, Rheinisch-Westfälische Technische Hochschule Aachen Y1 - 1996 IS - 06 ER - TY - JOUR A1 - Zhen, Manghao A1 - Liang, Yunpei A1 - Staat, Manfred A1 - Li, Quanqui A1 - Li, Jianbo T1 - Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression JF - Theoretical and Applied Fracture Mechanics N2 - The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress–strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress–strain curves of the fissured sandstone specimens. KW - Constitutive model KW - Damage mechanics theory KW - Discontinuous fractures KW - Uniaxial compression test KW - Non-parallel fissures Y1 - 2024 U6 - https://doi.org/10.1016/j.tafmec.2024.104373 SN - 0167-8442 VL - 131 PB - Elsevier CY - Amsterdam ER -