TY - CHAP A1 - Tran, Thanh Ngoc A1 - Staat, Manfred ED - Eberhardsteiner, J. T1 - A primal-dual shakedown analysis of 3D structures using the face-based smoothed finite element method T2 - Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Y1 - 2012 N1 - 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012 ER - TY - CHAP A1 - Pham, Phu Tinh A1 - Nguyen, Thanh Ngoc A1 - Staat, Manfred T1 - FEM based shakedown analysis of hardening structures T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 870 EP - 882 ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Keinz, Jan A1 - Kusterer, K. A1 - Kroninger, D. A1 - Kitajima, J. A1 - Kazari, M. A1 - Horikama, A. T1 - Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications T2 - Proceedings of ASME Turbo Expo 2012 Y1 - 2013 N1 - ASME Turbo Expo 2012, GT2012, June 11-15, 2012, Copenhagen, Denmark ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Keinz, Jan A1 - Hendrick, P. A1 - Recker, E. T1 - Low NOx Hydrogen combustion chamber for industrial gas turbine applications“, 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery T2 - ISROMAC-14 : the Forteenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; Honolulu, Hawaii, February 27 - March 02nd, 2012 Y1 - 2012 N1 - International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; (14 ; 2012.02.27-03.02 ; Honolulu, Hawaii) ER - TY - JOUR A1 - Nomdedeu, Mar Monsonis A1 - Willen, Christine A1 - Schieffer, Andre A1 - Arndt, Hartmut T1 - Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web JF - Marine Biology N2 - The objective of our study was to analyze the effects of temperature on the population dynamics of a three-species food web consisting of two prey bacteria (Pedobacter sp. and Acinetobacter johnsonii) and a protozoan predator (Tetrahymena pyriformis) as model organisms. We assessed the effects of temperature on the growth rates of all three species with the objective of developing a model with four differential equations based on the experimental data. The following hypotheses were tested at a theoretical level: Firstly, temperature changes can affect the dynamic behavior of a system by temperature-dependent parameters and interactions and secondly, food web response to temperature cannot be derived from the single species temperature response. The main outcome of the study is that temperature changes affect the parameter range where coexistence is possible within all three species. This has significant consequences on our ideas regarding the evaluation of effects of global warming. Y1 - 2012 U6 - http://dx.doi.org/10.1007/s00227-012-1966-x SN - 1432-1793 VL - 159 IS - 11 SP - 2423 EP - 2430 PB - Springer CY - Berlin ER - TY - THES A1 - Schieffer, Andre T1 - Studies on diversity and coexistence in an experimental microbial community N2 - Biodiversity and the coexistence of species have puzzled and fascinated biologists since decades and is a hotspot in todays’ natural sciences. Preserving this biodiversity is a great challenge as habitats and environments underlying tremendous changes like climate change and the loss of natural habitats, which are mainly due to anthropogenic influences. The coexistence of numerous species even in homogeneous environments is a stunning feature of natural communities and has been summarized under the term ‘paradox of plankton’. Up to now, there are several mechanisms discussed, which may contribute to local and global diversity of organisms. Several interspecific trade offs have been identified maintaining the coexistence of species like their abilities regarding competition and predator avoidance, their capability to disperse in space and time, and their ability to exploit variable resources. Further, micro-evolutionary dynamics supporting the coexistence of species have been added to our knowledge, and deriving from theoretical deterministic models, non-linear dynamics which describe the temporal fluctuation of abundances of organisms. Whereas competition and predation seem to be clue structural elements within interacting organisms, the intrinsic dynamic behavior – by means of temporal changes in abundance - plays an important role regarding coexistence within a community. The present work sheds light on different factors affecting the coexistence of species using experimental microbial model systems consisting of a bacterivorous ciliate as the predator and two bacteria strains as prey organism. Additionally, another experimental setup consisting of two up to five bacteria species competing for one limiting resource was investigated. Highly controllable chemostat systems were established to exclude extrinsic disturbances. According to theoretical analyses I was able to show - experimentally and theoretically - that phenotypic plasticity of one species within a microbial one-predator-two-prey food web enlarges the range of possible coexistence of all species under different dynamic conditions, compared to a food web without phenotypic plasticity. This was accompanied by non-linear (chaotic) population dynamics within all experimental systems showing phenotypic plasticity. The experiments on the interplay of competition, predation and invasion showed that all aspects have an influence on species coexistence. Under undisturbed controlled conditions all aspects were analyzed in detail and in combination. Populations showed oscillations which were shown by quasi-chaotic attractors in phase space diagrams. Competition experiments with two up to five bacteria species competing for one limiting resource showed that all organisms were able to coexist which was mediated by species oscillations entering a regime of chaos. Besides that fact it was found, that the productivity (biomass) as well as the total cell numbers – under the same nutrition supply – increased by an increasing number of species in the experimental systems. Up to now, the occurrence of non-linear dynamics in well controlled experimental studies has been recognized several times and this phenomenon seemed to be more common in natural systems than generally assumed. N2 - Biodiversität und die Koexistenz von Arten fasziniert und verblüfft Biologen seit Jahr-zehnten und stellen einen Schwerpunkt in der heutigen Umweltforschung dar. Der Schutz und die Konservierung dieser Mannigfaltigkeit stellen eine große Herausfor-derung dar, da die natürlichen Lebensräume sowie die Umwelt enormen Verände-rungen unterworfen sind, welche meist in einem anthropogenen Ursprung wurzeln. Die Koexistenz vieler Arten, auch in relativ homogenen Habitaten ist ein faszinieren-des Charakteristikum natürlicher Lebensgemeinschaften und wird als ‚Paradox des Planktons‘ bezeichnet. Gegenwärtig werden diverse Ursachen diskutiert, welche vermutlich zur lokalen und globalen Diversität von Organismen beitragen. Einige die-ser möglichen Ursachen, die zur Aufrechterhaltung der Koexistenz der Arten beitra-gen, wurden identifiziert: Das Vermögen der Konkurrenz- und Prädationsvermeidung, die Fähigkeit räumlicher sowie zeitlicher Verteilung, sowie das Vermögen variable Ressourcen zu nutzen. Des Weiteren wurden mikro-evolutionäre Phänomene und Dynamiken identifiziert, sowie, von theoretischen deterministischen Modellen ausge-hend, nichtlineare Dynamiken, welche die zeitlichen Schwankungen der Abundanzen von Organismen beschreiben. Diese Aspekte stellen die Schlüsselkomponenten zwi-schen interagierenden Organismen dar, wobei das intrinsiche, nicht lineare dynami-sche Verhalten in Form von zeitlichen Veränderungen in Abundanzen eine zusätzli-che entscheidende Rolle bezüglich der Koexistenz von Arten spielen kann. Einige dieser Aspekte wurden in der vorliegenden Arbeit untersucht. In Anlehnung an theoretische Analysen konnte experimentell sowie theoretisch gezeigt werden, dass phänotypische Plastizität in einer Bakterienart in einem mikrobiellen Ein-Räuber-zwei-Beute-Nahrungsgewebe den Bereich der möglichen Koexistenz unter sich än-dernden experimentellen Bedingungen (Änderungen der Durchflussraten der Chemostate) – im direkten Vergleich zu einem experimentellen Nahrungsgewebe ohne phänotypische Plastizität – erweitern kann. Dies wurde begleitet durch nicht lineare Abundanzschwankungen in den Populationen aller untersuchten Versuchs-ansätze. In weiteren Untersuchungen wurde das Zusammenspiel von Konkurrenz, Prädation und Invasion in einer experimentellen mikrobiellen Gemeinschaft untersucht. Unter kontrollierten Bedingungen konnten diese Aspekte detailliert untersucht werden und es konnten Aufschlüsse darüber gewonnen werden, welche Reaktionen (Interaktionen) innerhalb der untersuchten Gemeinschaften stattfinden. Im Versuchsverlauf wurden Veränderungen in den Abundanzen sowie chaotische Schwankungen der Zellzahlen festgestellt. In Konkurrenzexperimenten von zwei bis zu fünf um eine limitierende Ressource konkurrierende Bakterienarten konnte gezeigt werden, dass alle Arten – vermittelt durch chaotische Abundanzschwankungen – nebeneinander koexistieren konnten. Begleitend dazu wurde herausgefunden, dass die Produktivität (Biomasse) sowie die Gesamtzellzahl bei gleicher Nahrungsverfügbarkeit der experimentellen Systeme mit steigender Artenzahl zunehmen. Gegenwärtig ist das Auftreten von Chaos in gut kontrollierten experimentellen Studien vereinzelt beobachtet worden, wobei dieses Phänomen jedoch häufiger in der Natur aufzutreten scheint als generell vermutet. Y1 - 2012 N1 - Köln, Univ., Diss., 2012 ER - TY - JOUR A1 - Alexopoulos, Spiros T1 - Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure JF - Journal of Engineering Science and Technology Review N2 - Two of the main environmental problems of today’s society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air’s heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100% from renewable energy sources Y1 - 2012 SN - 1791-2377 N1 - Special Issue on Renewable Energy Systems VL - 5 IS - 4 SP - 48 EP - 55 ER - TY - CHAP A1 - Streun, M. A1 - Al-Kaddoum, R. A1 - Parl, C. A1 - Pietrzyk, U. A1 - Ziemons, Karl A1 - Waasen, S. van T1 - Simulation studies of optical photons in monolithic block scintillators T2 - 2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) N2 - The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio. Y1 - 2012 SN - 978-1-4673-0120-6 (electronic ISBN) SN - 978-1-4673-0118-3 (print ISBN) U6 - http://dx.doi.org/10.1109/NSSMIC.2011.6154621 SP - 1380 EP - 1382 PB - IEEE CY - New York ER - TY - CHAP A1 - Frotscher, Ralf A1 - Raatschen, Hans-Jürgen A1 - Staat, Manfred ED - Holzapfel, Gerhard A. T1 - Effectiveness of the edge-based smoothed finite element method applied to soft biological tissues T2 - ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012 Y1 - 2012 SN - 978-3-85125-223-1 PB - Verlag d. Technischen Universität Graz CY - Graz ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Nguyen, Nhu Hunyh A1 - Staat, Manfred T1 - Finite Element Implementation of a 3D Fung-type Model T2 - ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012 Y1 - 2012 SN - 978-3-85125-223-1 PB - Verlag d. Technischen Universität Graz CY - Graz ER -