TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Blome, Hans-Joachim A1 - Gerzer, Rupert A1 - Baumstark-Khan, Christa A1 - Ewald, Reinhold A1 - Heinicke, Christiane A1 - Czupalla, Markus A1 - Carter, Layne A1 - Anderson, Molly T1 - Überleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017 Y1 - 2017 ER - TY - JOUR A1 - Finger, Felix T1 - Vergleichende Leistungs- und Nutzenbewertung von VTOL- und CTOL-UAVs JF - Luft- und Raumfahrt : informieren, vernetzen, fördern / Hrsg.: Deutsche Gesellschaft für Luft- und Raumfahrt Y1 - 2017 SN - 0173-6264 VL - 38 IS - 1 SP - 44 EP - 47 ER - TY - JOUR A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Chen, Qian A1 - Förstner, Roger A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Field-test performance of an ice-melting probe in a terrestrial analogue environment JF - Icarus N2 - Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 % in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar. Y1 - 2023 U6 - https://doi.org/10.1016/j.icarus.2023.115852 N1 - Forschungsdaten hierzu: "Performance data of an ice-melting probe from field tests in two different ice environments" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10890) IS - 409 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Mertens, Josef ED - Nitsche, Wolfgang T1 - Some important results of the technology programme RaWid T2 - New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72) Y1 - 1999 SN - 978-3-663-10903-7 (Print) SN - 978-3-663-10901-3 (Elektronisch) U6 - https://doi.org/10.1007/978-3-663-10901-3_41 SP - 315 EP - 322 PB - Springer Fachmedien CY - Wiesbaden ER - TY - RPRT A1 - Esch, Thomas A1 - Funke, Harald A1 - Roosen, Petra T1 - SIoBiA – Safety Implications of Biofuels in Aviation N2 - Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called “MOGAS” (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 % volume per volume (v/v) (bio-)methanol or up to 5 % v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline’s chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots. Y1 - 2010 N1 - Analysis of the safety implications of the use of biofuels (ethanol admixture) for piston engines and general aviation aircraft and assessment of potential environmental benefits. PB - EASA CY - Köln ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Barnat, Miriam A1 - Bosse, Elke A1 - Mergner, Julia A1 - Jänsch, Vanessa T1 - Entwicklung studienrelevanter Kompetenzen im Zusammenspiel mit Studieneinstiegsangeboten T2 - KoBF-Auswertungsworkshop 31.05.-01.06.2017 Y1 - 2017 ER - TY - GEN A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Tegtmeyer, Philipp A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode T2 - AIAA SCITECH 2022 Forum N2 - This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed. Y1 - 2021 U6 - https://doi.org/10.2514/6.2022-0546 N1 - AIAA SCITECH 2022 Forum, January 3-7, 2022, San Diego, CA & Virtual PB - AIAA CY - Reston, Va. ER - TY - PAT A1 - Rosenkranz, Josef T1 - Überwachungsvorrichtung für eine Auswuchtmaschine : Patentschrift Y1 - 2001 PB - Deutsches Patent- und Markenamt CY - München ER -