TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel A1 - Hermens, G. T1 - Hybrid investigation on the hydraulic performance of a new trapezoidal fishway T2 - 7th IAHR International Symposium on Hydraulic Structures, ISHS 2018 Y1 - 2018 SN - 978-069213277-7 U6 - https://doi.org/10.15142/T3S06R SP - 184 EP - 193 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Tullis, Blake T1 - Hydraulic Structures - ISHS2018 in Perspective T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - https://doi.org/10.15142/T3WH2B ER - TY - CHAP A1 - Bornebusch, Michael T1 - Hydraulische und hydrologische Modellsimulation als Planungswerkzeug für Hochwasser-Schutz-Massnahmen N2 - In: Alfha.net / Sektion Bauingenieurwesen: 1. [Erster] Erfahrungsaustausch : Absolventen des Fachbereichs Bauingenieurwesens berichten. 13. Oktober 2006. S. 25-27. Zusammenfassung des Vortrags. KW - Hochwasserschutz KW - Niederschlag-Abfluss-Modelle KW - N-A-Modelle KW - Gewässerausbau Y1 - 2006 ER - TY - CHAP A1 - Ahmed, H. A1 - Schlenkhoff, A. A1 - Bung, Daniel Bernhard T1 - Hydrodynamic characteristics of vertical slotted wall breakwaters T2 - Balance and uncertainty - water in a changing world : proceedings of the 34th IAHR world congress ; 33rd Hydrology and Water Resources Symposium ; 10th Conference on Hydraulics in Water Engineering ; 26 June - 1 July 2011, Brisbane, Australia Y1 - 2011 SN - 978-0-85825-868-6 SP - 1179 EP - 1186 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel T1 - Image processing for bubble image velocimetry in self-aerated flows T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel ED - Dewals, Benjamin T1 - Image processing techniques for velocity estimation in highly aerated flows: bubble image velocimetry vs. optical flow T2 - Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016) Y1 - 2016 SN - 978-1-138-02977-4 SN - 978-1-4987-8149-7 (eBook) U6 - https://doi.org/10.1201/b21902-31 SP - 151 EP - 157 PB - CRC Press ER - TY - CHAP A1 - Döring, Bernd A1 - Feldmann, Markus A1 - Kuhnhenne, Markus A1 - Hellberg, Jan T1 - Implementing a thermal activation system into a light-weight steel deck element T2 - Eurosteel 2008 : 5th European Conference on Steel and Composite Structures ; research, practice, new materials ; 3rd to 5th September 2008, Graz, Austria / ed. by Robert Ofner ... Y1 - 2008 SN - 92-0147-000-90 SP - 941 EP - 946 PB - ECCS, European Convention for Construction Steelwork CY - Brussels ER - TY - CHAP A1 - Döring, Bernd A1 - Sedlacek, Gerhard T1 - Improvement of thermal comfort in light weight buildings made of steel with new concepts for slab systems T2 - 10th Nordic Steel Construction Conference, Copenhagen, Denmark 7-9. June 2004: NSCC 2004 : proceedings Y1 - 2004 SP - 35 EP - 44 PB - Danish Steel Inst. CY - Copenhagen ER - TY - CHAP A1 - Ziller, Claudia A1 - Döring, Bernd ED - Carmeliet, J. ED - Hens, H. ED - Vermeir, G. T1 - Influence of the external dynamic wind pressure on the ventilation of double facades T2 - Research in building physics: proceedings of the Second International Conference on Building Physics : Leuven, Belgium, 14-18 September 2003 Y1 - 2003 SN - 9058095657, 9789058095657 SP - 527 EP - 533 PB - Taylor and Francis CY - Hoboken ER -