TY - BOOK A1 - Samm, Doris A1 - Faissner, H. A1 - Henrigs, W. A1 - Preussger, A. T1 - Further evidence for the radiative decay of a light, penetrating particle / Faissner, H. ; Heinrigs, W. ; Preussger, A. ; Samm, D. Y1 - 1982 N1 - Also published in INIS-mf--9311 PB - Technische Hochschule CY - Aachen ER - TY - JOUR A1 - Samm, Doris A1 - Faissner, H. A1 - Moers, T. A1 - Priem, R. T1 - Modular wall-less drift chamber for muon detection at the LHC / H. Faissner, Th. Moers, R. Priem, ... , D. Samm [u.a.] JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 330 (1993), H. 1-2 Y1 - 1993 SP - 76 EP - 82 ER - TY - JOUR A1 - Schaefer, Thomas A1 - Höfken, Hans-Wilhelm A1 - Schuba, Marko T1 - Windows Phone 7 from a Digital Forensics’ Perspective Y1 - 2011 N1 - ICDF2C <3, 2011, Dublin> PB - Springer CY - Berlin ER - TY - CHAP A1 - Schiffer, Fabian A1 - Bragard, Michael T1 - Cascaded LQ and Field-Oriented Control of a Mobile Inverse Pendulum (Segway) with Permanent Magnet Synchronous Machines T2 - 2019 20th International Conference on Research and Education in Mechatronics (REM) Y1 - 2019 SN - 978-1-5386-9257-8 U6 - http://dx.doi.org/10.1109/REM.2019.8744101 SP - 1 EP - 8 ER - TY - CHAP A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - Decision-Theoretic Planning with Linguistic Terms in Golog T2 - FLinAl 2015 - Fuzzy Logic in Artificial Intelligence : Proceedings of the Workshop on Fuzzy Logic in AI (FLinAI-15) co-located with the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015) Buenos Aires, Argentina, July 25, 2015. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0074-1424-4 SN - 1613-0073 ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - Decision-Theoretic Planning with Fuzzy Notions in GOLOG JF - International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems N2 - In this paper we present an extension of the action language Golog that allows for using fuzzy notions in non-deterministic argument choices and the reward function in decision-theoretic planning. Often, in decision-theoretic planning, it is cumbersome to specify the set of values to pick from in the non-deterministic-choice-of-argument statement. Also, even for domain experts, it is not always easy to specify a reward function. Instead of providing a finite domain for values in the non-deterministic-choice-of-argument statement in Golog, we now allow for stating the argument domain by simply providing a formula over linguistic terms and fuzzy uents. In Golog’s forward-search DT planning algorithm, these formulas are evaluated in order to find the agent’s optimal policy. We illustrate this in the Diner Domain where the agent needs to calculate the optimal serving order. Y1 - 2016 U6 - http://dx.doi.org/10.1142/S0218488516400134 SN - 1793-6411 VL - 24 IS - Issue Suppl. 2 SP - 123 EP - 143 PB - World Scientific CY - Singapur ER - TY - CHAP A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A System Layout for Cognitive Service Robots T2 - Cognitive Robot Architectures. Proceedings of EUCognition 2016 Y1 - 2017 SN - 1613-0073 N1 - CEUR-WS Vol-1855 SP - 44 EP - 45 ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - ERIKA—Early Robotics Introduction at Kindergarten Age JF - Multimodal Technologies Interact N2 - In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human–robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents. Y1 - 2018 U6 - http://dx.doi.org/10.3390/mti2040064 SN - 2414-4088 VL - 2 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus JF - Journal of Intelligent & Robotic Systems Y1 - 2011 SN - 0921-0296 VL - 63 IS - 2 SP - 273 EP - 300 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Proceedings of the Fourth International Conference on Intelligent Robotics and Applications (ICIRA 2011) JF - Proceedings of the Fourth International Conference on Intelligent Robotics and Applications (ICIRA 2011) Y1 - 2010 SP - 1 EP - 10 ER -