TY - JOUR A1 - Hüning, Felix T1 - Hart im Nehmen : Low-Voltage-Powermosfets mit Super-Junction-1-Technologie optimieren JF - Elektronik-Journal. 44 (2009), H. 12 Y1 - 2009 SN - 0013-5674 SP - 36 EP - 38 PB - - ER - TY - BOOK A1 - Hüning, Felix T1 - The fundamentals of electrical engineering for mechatronics Y1 - 2014 SN - 978-3-11-034991-7 (Druckausg.) SN - 978-3-11-030840-2 (E-Book) PB - de Gruyter CY - Berlin ER - TY - CHAP A1 - Hüning, Felix T1 - Power semiconductors : key components for HEV/EV T2 - FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies Y1 - 2014 N1 - Datenformat: PDF PB - KIVI CY - [s.l.] ER - TY - BOOK A1 - Hüning, Felix T1 - Sensoren und Sensorschnittstellen Y1 - 2016 SN - 978-3-11-043854-3 SN - 978-3-11-043855-0 (Online-Ausgabe) PB - De Gruyter Oldenbourg CY - Berlin ER - TY - CHAP A1 - Hüning, Felix T1 - Power Semiconductors for the automotive 48V board net T2 - PCIM Europe 2016 Conference Proceedings Y1 - 2016 SN - 978-3-8007-4186-1 SP - 1963 EP - 1969 PB - VDE Verl. CY - Berlin ER - TY - BOOK A1 - Hüning, Felix T1 - Embedded Design For IoT With Renesas Synergy Y1 - 2018 N1 - gedruckt in der Bereichsbibliothek Eupener Str. vorhanden; Document No. R01PF0164ED0100 PB - Renesas Electronics CY - Düsseldorf ER - TY - BOOK A1 - Hüning, Felix T1 - Embedded Systems für IoT Y1 - 2019 SN - 978-3-662-57900-8 SN - 978-3-662-57901-5 U6 - http://dx.doi.org/10.1007/978-3-662-57901-5 PB - Berlin, Heidelberg CY - Springer Vieweg ER - TY - JOUR A1 - Hüning, Felix T1 - Nachrüstmöglichkeiten von Dieselfahrzeugen aus technischer Sicht JF - Zeitschrift für Verkehrsrecht : NZV Y1 - 2019 IS - 1 SP - 27 EP - 32 PB - C.H.Beck ER - TY - CHAP A1 - Hüning, Felix T1 - Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students T2 - Blended Learning in Engineering Education: challenging, enlightening – and lasting? N2 - The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher’s observations of the student’s learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching. Y1 - 2021 SN - 978-2-87352-023-6 N1 - SEFI 49th Annual Conference Technische Universität Berlin (online), 13 – 16 September 2021 SP - 1405 EP - 1409 ER - TY - PAT A1 - Hüning, Felix T1 - Sensorvorrichtung zur Erfassung eines Magnetfelds sowie magnetbasiertes Sensorsystem zur Erfassung einer Bewegung eines beweglichen Objekts N2 - Eine Sensorvorrichtung (10;110;210;310;410) zur Erfassung eines Magnetfelds, mit einer Wiegand-Sensoreinheit (12;112;212) umfassend: • - mindestens zwei Wiegand-Drähte (20) und • - eine Spulenanordnung (22;122;222), die die mindestens zwei Wiegand-Drähte (20) radial umschließt und die • • • ein Sensorelement (26;126;226) und • • ein Triggerelement (28;128;228), durch das ein Triggermagnetfeld erzeugbar ist, bildet, ist bekannt. Um ein magnetbasiertes Sensorsystem (300;400) zur Erfassung einer Bewegung eines beweglichen Objekts (301;401) zu ermöglichen, das ohne externe Energieversorgung zuverlässig sowie energieeffizient arbeitet und kostengünstig hergestellt werden kann, ist bei der erfindungsgemäßen Sensorvorrichtung (10;110;210;310;410) eine Wiegand-Triggereinheit (14;14a) vorhanden, umfassend: • - einen Wiegand-Draht (30) und • - eine Trigger-Sensorspule (32), die den Wiegand-Draht (30) radial umschließt, wobei ein erstes Ende der Trigger-Sensorspule (32) der Wiegand-Triggereinheit (14;14a) mit einem ersten Ende des Triggerelements (28;128;228) der Wiegand-Sensoreinheit (12;112;212) elektrisch verbunden ist und ein zweites Ende der Trigger-Sensorspule (32) der Wiegand-Triggereinheit (14;14a) mit einem zweiten Ende des Triggerelements (28;128;228) der Wiegand-Sensoreinheit (12;112;212) elektrisch verbunden ist. Auf diese Weise verstärkt ein in der Trigger-Sensorspule (32) erzeugter Impuls das Gesamtmagnetfeld, das auf die Wiegand-Drähte (20) in der Sensoreinheit einwirkt, derart, dass die Triggefeldstärke aller Wiegand-Drähte (20) überschritten wird und diese im wesentlichen zeitgleich auslösen. Y1 - 2023 N1 - Patent WO2023131396A1 ER -