TY - JOUR A1 - Meliß, Michael A1 - Oesterwind, Dieter A1 - Voß, Alfred T1 - Non-nuclear and non-fossil energy resources and their possibilities for future power generation JF - Kerntechnik N2 - It must be stressed that the assessment of the exploitation possibilities of the energy resources discussed in this paper requires further studies. With this proviso, the situation can be provisionally summarised as follows: The total potential of known geothermal steam sources is only 64 GW. Geothermal energy could therefore only make a significant contribution to covering the worldwide power needs if we succeed in exploiting dry geothermal reservoirs. Exploitation of tidal energy is limited to a few geographically favourable locations. The power generation potential at these locations is only about 64 GW. An important drawback of tidal power is discontinuous power generation. Large scale exploitation of wind, wave and glacier energy, and of ocean heat, requires solution of a number of technological problems. The environmental effects of exploitation of these energy resources are to some extent of a qualitatively different nature from those of operation of fossil-fuel-fired and of nuclear power plants. The scanty knowledge in this area often results in these effects being underestimated. In any case, however, it would be deliberately misleading to postulate that any form of power generation is possible without some detrimental effects on the environment. It may be stated in conclusion that, owing to their small potential or to the as yet insufficiently advanced technological development, none of the energy resources discussed in this paper can make a significant contribution to the solution of middle-term energy supply problems, i.e., to a rapid replacement of mineral oil and natural gas. Y1 - 1975 U6 - http://dx.doi.org/10.18419/opus-8093 SN - 0932-3902 N1 - Printausg. in der Bibliothek vorhanden: 63 ZS 010-1975 VL - 17 IS - 7 SP - 301 EP - 306 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Meißen, Ralf A1 - Krischer, C. T1 - Elektronische Fernsehlesehilfe für hochgradig sehbehinderte JF - Biomedical Engineering / Biomedizinische Technik Y1 - 1978 U6 - http://dx.doi.org/10.1515/bmte.1978.23.s1.220 VL - 23 IS - s1 SP - 220 EP - 221 PB - De Gruyter CY - Berlin ER - TY - BOOK A1 - Meißen, Ralf A1 - Hotfilter, Josef T1 - Modell einer Einrichtung zur Positionierung von kugelförmigen Brennelementen nach einer Bohrung mit berührungsloser fluidischer Abtastung / Josef Hotfilter ; Ralf Meißen Y1 - 1972 N1 - Kernforschungsanlage : Berichte der ... ; 898 PB - Kernforschungsanlage CY - Jülich ER - TY - BOOK A1 - Meißen, Ralf T1 - Ein Meßsystem zur photometrischen Untersuchung reversibler und irreversibler photochemischer Reaktionen im Zeitbereich von 50 ns bis 5 ms Y1 - 1975 N1 - Berichte d. Kernforschungsanlage Jülich ; 1171 ; zugl. Diss. Aachen PB - Zentralbibl. d. KFA CY - Jülich ER - TY - CHAP A1 - May, Martin A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - Latzke, Markus A1 - Bäumer, Klaus A1 - Uhlig, Ralf A1 - Söhn, Matthias A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Experimental facility for investigations of wire mesh absorbers for pressurized gases T2 - AIP Conference Proceedings Y1 - 2019 U6 - http://dx.doi.org/10.1063/1.5117547 SN - 0094243X VL - 2126 SP - 030035-1 EP - 030035-9 ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - http://dx.doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Marx, Ulrich A1 - Schenk, Friedrich A1 - Behrens, Jan A1 - Meyr, Ulrike A1 - Wanek, Paul A1 - Zang, Werner A1 - Schmitt, Robert A1 - Brüstle, Oliver A1 - Zenke, Martin A1 - Klocke, Fritz T1 - Automatic production of induced pluripotent stem cells JF - Procedia CIRP : First CIRP Conference on BioManufacturing Y1 - 2013 SN - 2212-8271 VL - Vol. 5 SP - 2 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Martin, S. A1 - Berg, G. A1 - Hardt, Arno A1 - Hürlimann, W. A1 - Köhler, M. A1 - Meißberger, J. A1 - Sagefka, T. A1 - Schult, O. W. B. ED - Sanderson, N. E. T1 - First experience with the magnet spectrometer 'BIG KARL' T2 - Use of magnetic spectrometers in nuclear physics : proceedings of the Daresbury study weekend 10 - 11 March 1979 Y1 - 1979 SP - 38 EP - 42 PB - Daresbury Lab. CY - Daresbury ER - TY - JOUR A1 - Martin, S. A. A1 - Berg, G. P. A. A1 - Hacker, U. A1 - Hardt, Arno A1 - Köhler, M. A1 - Meißburger, J. A1 - Osterfeld, F. A1 - Prasuhn, D. A1 - Riepe, G. A1 - Rogge, M. A1 - Schult, O. W. B. A1 - Speth, J. A1 - Turek, P. A1 - Gaul, G. A1 - Hagedoorn, H. A1 - Heide, J. A. van der A1 - Hinterberger, F. A1 - Huber, M. A1 - Jahn, R. A1 - Mayer-Kuckuk, T. A1 - Poth, H. A1 - Paetz gen. Schieck, H. T1 - COSY - a cooler synchrotron and storage ring JF - IEEE transactions on nuclear science. Vol. 32, iss. 5 Y1 - 1985 SN - 1558-1578 (E-Journal); 0018-9499 (Print) SP - 2694 EP - 2696 ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 159 EP - 172 ER -