TY - CHAP A1 - Paulsen, Svea A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Leite, A. A1 - Zang, J. A1 - Fonseca-Zang, W. A1 - Kuperjans, Isabel T1 - Continuous biogas production from sugarcane as sole substrate T2 - Energy Reports N2 - A German–Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space–time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates. Y1 - 2020 U6 - https://doi.org/10.1016/j.egyr.2019.08.035 N1 - 6th International Conference on Energy and Environment Research, ICEER 2019, 22–25 July, University of Aveiro, Portugal VL - 6 IS - Supplement 1 SP - 153 EP - 158 PB - Elsevier ER - TY - CHAP A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - Automated Software Quality Monitoring in Research Collaboration Projects T2 - ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops N2 - In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data. Y1 - 2020 U6 - https://doi.org/10.1145/3387940.3391478 N1 - ICSE '20: 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June 2020 - 19 July 2020 SP - 603 EP - 610 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Höfler, M. A1 - Kneer, R. A1 - Groß, Rolf Fritz A1 - Kehrmann, K. ED - Vorobieff, P. T1 - Chemical determination of oxygen transfer rates, transfer efficiencies and interphases evoked by aeration elements for liquid flows T2 - Computational Methods in Multiphase Flow VIII. - (WIT Transactions on Engineering Sciences ; Volume 89) Y1 - 2015 SN - 978-1-84564-946-3 (Print-Ausgabe) SN - 978-1-84564-947-0 (Online-Ausgabe) SN - 1746-4471 SP - 89 EP - 101 PB - WIT Press CY - Southampton ER - TY - CHAP A1 - Augenstein, Eckardt A1 - Herbergs, S. A1 - Kuperjans, Isabel A1 - Lucas, K. ED - Kjelstrup, Signe T1 - Simulation of industrial energy supply systems with integrated cost optimization T2 - Proceedings of ECOS 2005, the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems : Trondheim, Norway, June 20 - 22, 2005. - Vol. 2 Y1 - 2005 SN - 82-519-2041-8 N1 - CD-ROM-Ausg. u.d.T.: Shaping our future energy systems SP - 627 EP - 634 PB - Tapir Academic Press CY - Trondheim ER - TY - CHAP A1 - Augenstein, Eckardt A1 - Kuperjans, Isabel A1 - Lucas, K. ED - Tsatsaronis,, Georgios T1 - EUSEBIA - Decision-Support-System for Technical, Economical and Ecological Design and Evaluation of Industrial Energy Systems T2 - ECOS 2002 : proceedings of the 15th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Berlin, Germany July 3 - 5, 2002. - Vol. 1 Y1 - 2002 SN - 3-00-009533-0 SP - 446 EP - 453 PB - Techn. Univ., Inst. for Energy Engineering CY - Berlin ER - TY - CHAP A1 - Kumaran, P. A1 - Gopinathan, M. A1 - Razali, N. M. A1 - Kuperjans, Isabel A1 - Hariffin, B. A1 - Hamdan, H. T1 - Preliminary evaluation of atomization characteristics of improved biodiesel for gas turbine application T2 - IOP Conference Series: Earth and Environmental Science (EES) Y1 - 2013 U6 - https://doi.org/10.1088/1755-1315/16/1/012014 SN - 1755-1315 VL - 16 IS - 1 SP - 012014/1 EP - 012014/4 PB - Institute of Physics Publishing (IOP) CY - London [u.a.] ER - TY - CHAP A1 - Birkl, Josef A1 - Diendorfer, Gerhard A1 - Kern, Alexander A1 - Thern, Stephan T1 - Extremely high lightning peak currents T2 - 34th International Conference on Ligntning Protection, 02-07 September 2018 Y1 - 2018 SN - 978-1-5386-6635-7 ER -