TY - JOUR A1 - Murib, Mohammed Sharif A1 - Yeap, Weng-Siang A1 - Martens, Daan A1 - Bienstman, Peter A1 - Ceuninck, Ward de A1 - Grinsven, Bart van A1 - Schöning, Michael Josef A1 - Michiels, Luc A1 - Haenen, Ken A1 - Ameloot, Marcel A1 - Serpengüzel, Ali A1 - Wagner, Patrick T1 - Photonic detection and characterization of DNA using sapphire microspheres JF - Journal of biomedical optics N2 - A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500  μm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q≈104) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants. Y1 - 2014 U6 - http://dx.doi.org/10.1117/1.JBO.19.9.097006 SN - 1560-2281 (E-Journal); 1083-3668 (Print) VL - 19 IS - 9 SP - 097006 PB - SPIE CY - Bellingham ER - TY - CHAP A1 - Knott, Thomas C. A1 - Sofronia, Raluca E. A1 - Gerressen, Marcus A1 - Law, Yuen A1 - Davidescu, Arjana A1 - Savii, George G. A1 - Gatzweiler, Karl-Heinz A1 - Staat, Manfred A1 - Kuhlen, Torsten W. T1 - Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy T2 - Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789) N2 - Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted. KW - Bone sawing KW - virtual reality KW - training simulator Y1 - 2014 SN - 978-3-319-12057-7 (Online) SN - 978-3-319-12056-0 (Print) U6 - http://dx.doi.org/10.1007/978-3-319-12057-7_1 SP - 1 EP - 10 PB - Springer CY - Cham ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Schöning, Michael Josef T1 - Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection JF - Analytical chemistry N2 - The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor’s surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance–voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform. Y1 - 2014 U6 - http://dx.doi.org/10.1021/ac500458s SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 IS - 11 SP - 5370 EP - 5375 PB - ACS Publications CY - Columbus ER - TY - CHAP A1 - Voronkova, Eva B. A1 - Bauer, Svetlana M. A1 - Kotliar, Konstantin T1 - Computer simulation of the cornea-scleral shell as applied to pressure-volume relationship in the human eye T2 - 2014 International Conference on Computer Technologies in Physical and Engineering Applications : ICCTPEA 2014 : proceedings : June 30 2014-July 4 2014, St. Petersburg Y1 - 2014 SN - 978-1-4799-5315-8 SP - 204 EP - 205 ER - TY - JOUR A1 - Müller, Martin A1 - Hirschfeld, Julian A1 - Lambertz, Rita A1 - Schulze Lohoff, Andreas A1 - Lustfeld, Hans A1 - Pfeifer, Heinz A1 - Reißel, Martin T1 - Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks JF - Journal of power sources N2 - In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.jpowsour.2014.08.045 SN - 1873-2755 (E-Journal); 0378-7753 (Print) VL - 272 SP - 225 EP - 232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution JF - Procedia Engineering N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent. KW - Light-addressable Potentiometric Sensor KW - novel photoexcitation method KW - tilted constant illumination KW - spatial resolution Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.369 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 456 EP - 459 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Seki, K. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination JF - Procedia Engineering N2 - The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.563 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 612 EP - 615 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies JF - Procedia Engineering N2 - Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride). KW - LAPS KW - lable-free detection KW - DNA hybridization KW - field-effect sensor Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.647 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 755 EP - 758 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Schubert, J. A1 - Zander, W. A1 - Begoyan, V. K. A1 - Buniatyan, V. V. A1 - Schöning, Michael Josef T1 - Chemical sensors based on a high-k perovskite oxide of barium strontium titanate JF - Procedia Engineering N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor. KW - barium strontium titanate KW - high-k material KW - contactless conductivity sensor KW - multi-functional material KW - hydrogen peroxide Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.258 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 28 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Krischer, M. A1 - Wenzel, L. A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor JF - Procedia Engineering N2 - A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers. KW - Field-effect sensor KW - enzymatic (bio)degradation KW - poly(d, l-lactic acid) KW - in-situ monitoring KW - impedance spectroscopy Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.689 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 1314 EP - 1317 PB - Elsevier CY - Amsterdam ER -