TY - CHAP A1 - Pham, Phu Tinh A1 - Nguyen, Thanh Ngoc A1 - Staat, Manfred T1 - FEM based shakedown analysis of hardening structures T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 870 EP - 882 ER - TY - CHAP A1 - Staat, Manfred T1 - Limit and shakedown analysis under uncertainty T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 837 EP - 861 ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Garvey, G. J. A1 - Bocahut, A. A1 - Sacquin-Mora, S. A1 - Digel, Ilya A1 - Schneider, G. J. A1 - Natali, F. A1 - Artmann, Gerhard A1 - Zaccai, G. T1 - Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics JF - Journal of the Royal Society Interface N2 - Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. Y1 - 2012 U6 - https://doi.org/10.1098/rsif.2012.0364 SN - 1742-5689 VL - 9 IS - 76 SP - 2845 EP - 2855 PB - The Royal Society CY - London ER - TY - BOOK A1 - Digel, Ilya A1 - Zhubanova, Azhar Ahmetovna A1 - Akimbekov, Nuraly S. T1 - Visual Virology Y1 - 2012 SN - 978-601-247-298-1 N1 - Text kasachisch, russisch, englisch CY - Almaty ER - TY - JOUR A1 - Staat, Manfred A1 - Vu, Duc Khoi T1 - Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects JF - Engineering Fracture Mechanics ; 97(2013), H. 1 N2 - Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal–dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal–dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper. Y1 - 2012 U6 - https://doi.org/10.1016/j.engfracmech.2012.05.017 SN - 0013-7944 VL - 97 SP - 314 EP - 333 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Laack, Walter van ED - Beer, André-Michael ED - Adler, Martin T1 - Elektro- und Ultraschalltherapie T2 - Leitfaden Naturheilverfahren : für die ärztliche Praxis Y1 - 2012 SN - 978-3-437-56103-0 U6 - https://doi.org/10.1016/B978-3-437-56103-0.10013-5 SP - 285 EP - 299 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Laack, Walter van T1 - Schnittstelle Tod: Warum auf ein Danach vertrauen? Y1 - 2012 SN - 978-3-936624-14-4 N1 - Tagungsbeiträge des 2. Europäischen Seminars in Aachen zum Thema Nahtoderfahrungen mit dem Titel "Schnittstelle Tod", am 12. November 2011 mit Referenten aus fünf Ländern / [Hrsg.: Walter van Laack] PB - Books on Demand CY - Norderstedt ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - https://doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Spelthahn, Heiko A1 - Kirsanov, Dmitry A1 - Legin, Andrey A1 - Osterrath, Thomas A1 - Schubert, Jürgen A1 - Zander, Willi A1 - Schöning, Michael Josef T1 - Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions JF - Physica Status Solidi (a) N2 - In industrial processes there is a variety of heavy metals (e.g., copper, zinc, cadmium, and lead) in use for wires, coatings, paints, alloys, batteries, etc. Since the application of these transition metals for industry is inevitable, it is a vital task to develop proper analytical techniques for their monitoring at low activity levels, especially because most of these elements are acutely toxic for biological organisms. The determination of ions in solution by means of a simple and inexpensive sensor array is, therefore, a promising task. In this work, a sensor array with heavy metal-sensitive chalcogenide glass membranes for the simultaneous detection of the four ions Ag⁺, Cu2⁺, Cd2⁺, and Pb2⁺ in solution is realized. The results of the physical characterization by means of microscopy, profilometry, Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM) as well as the electrochemical characterization by means of potentiometric measurements are presented. Additionally, the possibility to expand the sensor array by polymeric sensor membranes is discussed. Y1 - 2012 SN - 1862-6319 U6 - https://doi.org/10.1002/pssa.201100733 VL - 209 IS - 5 SP - 885 EP - 891 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Spelthahn, Heiko A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Dünnschichtsensoren für die Schwermetallanalytik JF - GIT : Labor-Fachzeitschrift N2 - Die Detektion von Schadstoffen repräsentiert in der Umweltanalytik eine wichtige Aufgabenstellung. Gerade die Abwasser- bzw. Brauchwasseranalytik sowie die Prozesskontrolle haben einen hohen Stellenwert. Siliziumbasierte Dünnschichtsensoren bieten eine kostengünstige Möglichkeit, „online“-Messungen bzw. Vor-Ort-Messungen zeitnah durchzuführen. In dieser Arbeit wird ein potentiometrisches Sensorarray auf der Basis von Chalkogenidgläsern zur Detektion von Schwermetallen in wässrigen Medien vorgestellt. Y1 - 2012 SN - 0016-3538 VL - 56 IS - 4 SP - 285 EP - 287 PB - Wiley-VCH CY - Weinheim ER -