TY - JOUR A1 - Hennemann, Jörg A1 - Kohl, Claus-Dieter A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Schöning, Michael Josef T1 - Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations JF - physica status solidi (a) N2 - We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9% v/v at an operating temperature of 450 °C. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200775 SN - 1862-6319 VL - 210 IS - 5 SP - 859 EP - 863 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Wagner, Thorsten A1 - Kohl, Claus-Dieter A1 - Fröba, Michael A1 - Tiemann, Michael T1 - Gas sensing properties of ordered mesoporous SnO2 N2 - We report on the synthesis and CO gas-sensing properties of mesoporous tin(IV) oxides (SnO2). For the synthesis cetyltrimethylammonium bromide (CTABr) was used as a structure-directing agent; the resulting SnO2 powders were applied as films to commercially available sensor substrates by drop coating. Nitrogen physisorption shows specific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verified by TEM. The film conductance was measured in dependence on the CO concentration in humid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivity at low CO concentrations and turn out to be largely insensitive towards changes in the relative humidity. We compare the materials with commercially available SnO2-based sensors. KW - Biosensor KW - Tin oxide KW - sensing properties KW - CO KW - humidity Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1422 ER -