TY - CHAP A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Preface of the Special Issue of I3S 2005 in Jülich (Germany) N2 - International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220 KW - Biosensor KW - I3S 2005 KW - International Symposium on Sensor Science Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1365 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>: Proceedings book ; Tunisia, November, 13 & 14, 2009 / Humboldt Kolleg. Ed. by Michael J. Schöning ; Adnane Abdelghani N2 - The ANM’09 multi-disciplinary scientific program includes topics in the fields of "Nanotechnology and Microelectronics" ranging from "Bio/Micro/Nano Materials and Interfacing" aspects, "Chemical and Bio-Sensors", "Magnetic and Superconducting Devices", "MEMS and Microfluidics" over "Theoretical Aspects, Methods and Modelling" up to the important bridging "Academics meet Industry". KW - Nanopartikel KW - Biosensor KW - Supraleiter KW - MEMS KW - Biophoton KW - Nanotechnology ; Microelectronics ; Biosensors ; Superconductor ; MEMS Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3113 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Nanoscale Science and Technology (NS&T’12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Schöning ; Adnane Abdelghani N2 - Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in “Nanoscale Science and Technology” (NS&T’12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS&T’12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Schöning, Prof. Dr. Adnane Abdelghani KW - Biosensor KW - Nanotechnologie KW - Nanomaterial KW - Nano Materials KW - Bio-Sensors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3544 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schumacher, Kerstin A1 - Kloock, Joachim P. A1 - Rosenkranz, Christian A1 - Schultze, Joachim W. A1 - Müller-Veggian, Mattea A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of ISFETs on wafer level by means of a micro-droplet cell N2 - A wafer-level functionality testing and characterisation system for ISFETs (ionsensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of “good” ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for nonfunctioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors. KW - Biosensor KW - Biosensorik KW - ISFET KW - Wafer KW - ISFET KW - wafer-level testing KW - capillary micro-droplet cell Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1259 ER - TY - CHAP A1 - Platen, Johannes A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Microstructured Nanostructures – nanostructuring by means of conventional photolithography and layer-expansion technique N2 - A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, “fluidic-channel”-, “cantilever”- and meander-type structures. KW - Biosensor KW - Nanostructuring KW - layer expansion KW - pattern-size reduction KW - self-aligned patterning Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1477 ER - TY - CHAP A1 - Näther, Niko A1 - Juárez, Leon M. A1 - Emmerich, Rüdiger A1 - Berger, Jörg A1 - Friedrich, Peter A1 - Schöning, Michael Josef T1 - Detection of hydrogen peroxide (H2O2) at exposed temperatures for industrial processes N2 - An H2O2 sensor for the application in industrial sterilisation processes has been developed. Therefore, automated sterilisation equipment at laboratory scale has been constructed using parts from industrial sterilisation facilities. In addition, a software tool has been developed for the control of the sterilisation equipment at laboratory scale. First measurements with the developed sensor set-up as part of the sterilisation equipment have been performed and the sensor has been physically characterised by optical microscopy and SEM. KW - Biosensor KW - Gas sensor KW - hydrogen peroxide KW - sterilisation KW - catalytic decomposition Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1418 ER - TY - CHAP A1 - Arida, Hassan A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations N2 - A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors. KW - Biosensor KW - Heavy metal detection KW - thin-film microsensors KW - organic PVC membranes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1545 ER -