TY - JOUR A1 - Digel, Ilya A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Kayser, Peter T1 - Decrease in extracellular collagen crosslinking after NMR magnetic field application in skin fibroblasts JF - Medical and Biological Engineering and Computing. 45 (2007), H. 1 Y1 - 2007 SN - 1741-0444 SP - 91 EP - 97 ER - TY - JOUR A1 - Demirci, Taylan A1 - Kurulgan Demirci, Eylem A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Sakizli, Meral A1 - Temiz Artmann, Aysegül T1 - Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress JF - IUBMB Life. 61 (2009), H. 3 Y1 - 2009 SN - 1521-6543 N1 - Abstracts: Turkish Society of Molecular Medicine, Third International Congress of Molecular Medicine, May 5-8, 2009, Istanbul, Turkey SP - 311 EP - 312 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Trzewik, Jürgen A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Contractile tension of endothelial cells: An LPS based in-vitro sepsis model JF - IUBMB Life. 61 (2009), H. 3 Y1 - 2009 SN - 1521-6543 N1 - Abstracts: Turkish Society of Molecular Medicine, Third International Congress of Molecular Medicine, May 5-8, 2009, Istanbul, Turkey SP - 307 EP - 308 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, T. A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Karakulah, G. A1 - Artmann, Gerhard A1 - Sakizli, M. A1 - Temiz Artmann, Aysegül T1 - Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation JF - Cellular and molecular bioengineering. 4 (2011), H. 1 Y1 - 2011 SN - 1865-5025 SP - 46 EP - 55 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Kurulgan Demirci, Eylem T1 - The effect of rhAPC on contractile tension : an in-vitro sepsis model of cardiomyocytes and endothelial cells T1 - Der Effekt von rhAPC auf die zelluläre Kontraktionskraft : ein In-vitro-Sepsismodell für Kardiomyozyten und Endothelzellen Y1 - 2012 N1 - Aachen, Techn. Hochsch., Diss., 2012 ER -