TY - JOUR A1 - Vögele, Stefan A1 - Josyabhatla, Vishnu Teja A1 - Ball, Christopher A1 - Rhoden, Imke A1 - Grajewski, Matthias A1 - Rübbelke, Dirk A1 - Kuckshinrichs, Wilhelm T1 - Robust assessment of energy scenarios from stakeholders' perspectives JF - Energy N2 - Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions. Y1 - 2023 U6 - https://doi.org/10.1016/j.energy.2023.128326 SN - 1873-6785 (Online) SN - 0360-5442 (Print) IS - In Press, Article 128326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas A1 - Pallikarakis, Nikolaos T1 - Analysis of the transmission eigenvalue problem with two conductivity parameters JF - Applicable Analysis N2 - In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work. KW - Transmission Eigenvalues KW - Conductive Boundary Condition KW - Inverse Scattering Y1 - 2023 U6 - https://doi.org/10.1080/00036811.2023.2181167 SN - 0003-6811 PB - Taylor & Francis ER - TY - JOUR A1 - Rhoden, Imke A1 - Ball, Christopher Stephen A1 - Grajewski, Matthias A1 - Kuckshinrich, Wilhelm T1 - Reverse engineering of stakeholder preferences – A multi-criteria assessment of the German passenger car sector JF - Renewable and Sustainable Energy Reviews N2 - Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available. KW - Regionalization KW - Multi-criteria decision analysis KW - Preference assessment KW - E-Mobility KW - Mobility transition Y1 - 2023 U6 - https://doi.org/10.1016/j.rser.2023.113352 SN - 1364-0321 VL - 181 IS - July 2023 SP - Article number: 113352 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - https://doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bertz, Morten A1 - Molinnus, Denise A1 - Schöning, Michael Josef A1 - Homma, Takayuki T1 - Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy JF - Chemosensors N2 - Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death. KW - DPA (dipicolinic acid) KW - sterilization KW - Bacillus atrophaeus spores KW - optical trapping KW - Raman spectroscopy KW - optical sensor setup Y1 - 2023 U6 - https://doi.org/10.3390/chemosensors11080445 SN - 2227-9040 N1 - This article belongs to the Special Issue "Biosensors and Chemical Sensors for Food and Healthcare Monitoring—Celebrating the 10th Anniversary" VL - 8 IS - 11 PB - MDPI CY - Basel ER - TY - INPR A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Blaneck, Patrick Gustav A1 - Bialonski, Stephan T1 - Preprint: Speaker attribution in German parliamentary debates with QLoRA-adapted large language models T2 - Journal for Language Technology and Computational Linguistics N2 - The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems. Y1 - 2023 U6 - https://doi.org/10.48550/arXiv.2309.09902 N1 - Veröffentlichte Version verfügbar unter: https://doi.org/10.21248/jlcl.37.2024.244 ER - TY - JOUR A1 - Bertz, Morten A1 - Schöning, Michael Josef A1 - Molinnus, Denise A1 - Homma, Takayuki T1 - Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping JF - Physica status solidi (a) applications and materials science N2 - To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem. KW - hydrogen peroxide KW - optical spore trapping KW - Raman spectroscopy KW - sterilization conditions KW - temperature Y1 - 2024 U6 - https://doi.org/10.1002/pssa.202300866 SN - 1862-6319 (Online) SN - 1862-6300 (Print) N1 - Corresponding author: Michael J. Schöning IS - Early View PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Schoenrock, Britt A1 - Muckelt, Paul E. A1 - Hastermann, Maria A1 - Albracht, Kirsten A1 - MacGregor, Robert A1 - Martin, David A1 - Gunga, Hans-Christian A1 - Salanova, Michele A1 - Stokes, Maria J. A1 - Warner, Martin B. A1 - Blottner, Dieter T1 - Muscle stiffness indicating mission crew health in space JF - Scientific Reports N2 - Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes. KW - Ageing KW - Anatomy KW - Muscle KW - Musculoskeletal system KW - Physiology Y1 - 2024 U6 - https://doi.org/10.1038/s41598-024-54759-6 SN - 2045-2322 N1 - Corresponding author: Dieter Blottner VL - 14 IS - Article number: 4196 PB - Springer Nature CY - London ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - https://doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Karschuck, Tobias A1 - Poghossian, Arshak A1 - Ser, Joey A1 - Tsokolakyan, Astghik A1 - Achtsnicht, Stefan A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage JF - Sensors and Actuators B: Chemical N2 - Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed. KW - Field-effect biosensor KW - Capacitive model KW - Enzyme coverage KW - Multianalyte detection KW - Penicillin Y1 - 2024 U6 - https://doi.org/10.1016/j.snb.2024.135530 SN - 0925-4005 (Print) SN - 1873-3077 (Online) N1 - Corresponding Author: Michael J. Schöning VL - 408 PB - Elsevier CY - Amsterdam ER -