TY - JOUR A1 - Hasan, Istabrak A1 - Keil, Ludger A1 - Staat, Manfred A1 - Wahl, Gerhard A1 - Bourauel, Christoph T1 - Determination of the frictional coefficient of the implant-antler interface : experimental approach JF - Biomedical Engineering / Biomedizinische Technik N2 - The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5–0.7 and 0.3–0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens. Y1 - 2012 SN - 1862-278X VL - 57 IS - 5 SP - 359 EP - 363 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Bassam, Rasha A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Digel, Ilya T1 - Effects of spermine NONOate and ATP on the thermal stability of hemoglobin JF - BMC Biophysics N2 - Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell. KW - Nitric Oxide Donor KW - NONOate KW - Circular Dichroism KW - Nitric Oxide Y1 - 2012 U6 - https://doi.org/10.1186/2046-1682-5-16 SN - 2046-1682 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Grotendorst, Johannes T1 - IAS Winter School: Hierarchical Methods for Dynamics in Complex Molecular Systems JF - Innovatives Supercomputing in Deutschland : inSiDE Y1 - 2012 VL - 10 SP - 104 EP - 1 ER - TY - JOUR A1 - Mansurov, Zulkhair A. A1 - Jandosov, J. M. A1 - Kerimkulova, Almagul R. A1 - Azat, Seitkhan A1 - Zhubanova, Azhar Achmet A1 - Digel, Ilya A1 - Savistkaya, I. S. A1 - Akimbekov, Nuraly S. A1 - Kistaubaeva, A. S. T1 - Nanostructured carbon materials for biomedical use JF - Eurasian chemico-technological journal : quarterly journal of the International Higher Education Academy of Sciences N2 - One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials. Y1 - 2014 U6 - https://doi.org/10.18321/ectj224 SN - 1562-3920 VL - 15 (2013) IS - 3 SP - 209 EP - 217 PB - Institute of Combustion Problems CY - Almaty ER - TY - JOUR A1 - Staat, Manfred A1 - Vu, Duc Khoi T1 - Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects JF - Engineering Fracture Mechanic N2 - Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal–dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal–dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper. Y1 - 2012 U6 - https://doi.org/10.1016/j.engfracmech.2012.05.017 SN - 0013-7944 VL - 97 IS - 1 SP - 314 EP - 333 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brockhaus, Moritz K. A1 - Behbahani, Mehdi A1 - Muris, Farina A1 - Jansen, Sebastian V. A1 - Schmitz-Rode, Thomas A1 - Steinseifer, Ulrich A1 - Clauser, Johanna C. T1 - In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept JF - Artificial Organs N2 - Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential. Y1 - 2021 U6 - https://doi.org/10.1111/aor.14046 SN - 1525-1594 VL - 45 IS - 12 SP - 1513 EP - 1521 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Schöning, Michael Josef T1 - Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices T2 - Biodegradable biopolymers. Vol. 1 Y1 - 2015 SN - 978-1-63483-632-6 SP - 135 EP - 153 PB - Nova Science Publ. CY - Hauppauge ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Göll, Fabian A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon JF - Medicine & Science in Sports & Exercise N2 - Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle–tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force–length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force–length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13% ± 10%, 105% ± 28%, and 54% ± 24%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32% ± 12%) and with greater pennation angles (31% ± 26%). A mean deficit in plantarflexion moment of 31% ± 10% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function. KW - Tendon Rupture KW - Stiffness KW - Simulation KW - Muscle Force KW - Muscle Fascicle Y1 - 2021 U6 - https://doi.org/10.1249/MSS.0000000000002592 SN - 1530-0315 VL - 53 IS - 7 SP - 1356 EP - 1366 PB - American College of Sports Medicine CY - Philadelphia, Pa. ER - TY - GEN A1 - Digel, Ilya T1 - In-situ biological decontamination of an ice melting probe Y1 - 2010 N1 - 38th COSPAR Scientific Assembly. Held 18-15 July 2010, in Bremen, Germany Abstract unter https://www.cospar-assembly.org/abstractcd/OLD/COSPAR-10/abstracts/data/pdf/abstracts/F36-0013-10.pdf ER -