TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing JF - Current Opinion in Electrochemistry Y1 - 2021 U6 - https://doi.org/10.1016/j.coelec.2021.100727 SN - 2451-9103 IS - In Press, Journal Pre-proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Willwacher, Steffen A1 - Albracht, Kirsten T1 - Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration JF - Scandinavian Journal of Medicine & Science in Sports N2 - The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work. KW - locomotion KW - muscle mechanics KW - running KW - sprint start KW - ultrasonography Y1 - 2021 U6 - https://doi.org/10.1111/sms.13956 SN - 0905-7188 (Druckausgabe) SN - 1600-0838 (Onlineausgabe) VL - 31 IS - 7 SP - 1471 EP - 1480 PB - Wiley-Blackwell CY - Oxford ER - TY - CHAP A1 - Klöser, Lars A1 - Kohl, Philipp A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - Multi-attribute relation extraction (MARE): simplifying the application of relation extraction T2 - Proceedings of the 2nd International Conference on Deep Learning Theory and Applications DeLTA - Volume 1 N2 - Natural language understanding’s relation extraction makes innovative and encouraging novel business concepts possible and facilitates new digitilized decision-making processes. Current approaches allow the extraction of relations with a fixed number of entities as attributes. Extracting relations with an arbitrary amount of attributes requires complex systems and costly relation-trigger annotations to assist these systems. We introduce multi-attribute relation extraction (MARE) as an assumption-less problem formulation with two approaches, facilitating an explicit mapping from business use cases to the data annotations. Avoiding elaborated annotation constraints simplifies the application of relation extraction approaches. The evaluation compares our models to current state-of-the-art event extraction and binary relation extraction methods. Our approaches show improvement compared to these on the extraction of general multi-attribute relations. Y1 - 2021 SN - 978-989-758-526-5 U6 - https://doi.org/10.5220/0010559201480156 N1 - 2nd International Conference on Deep Learning Theory and Applications, DeLTA2021, July 7-9, 2021 SP - 148 EP - 156 PB - SciTePress CY - Setúbal ER - TY - JOUR A1 - Monti, Elena A1 - Waldvogel, Janice A1 - Ritzmann, Ramona A1 - Freyler, Kathrin A1 - Albracht, Kirsten A1 - Helm, Michael A1 - De Cesare, Niccolò A1 - Pavan, Piero A1 - Reggiani, Carlo A1 - Gollhofer, Albert A1 - Narici, Marco Vincenzo T1 - Muscle in variable gravity: “I do not know where I am, but I know what to do” JF - Frontiers in Physiology N2 - Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal “Earth” gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth’s gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g. KW - parabolic flight KW - drop jump KW - hypo-gravity KW - hyper-gravity KW - sarcomere operating length Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.714655 SN - 1664-042X VL - 12 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Albanna, Walid A1 - Conzen, Catharina A1 - Weiss, Miriam A1 - Seyfried, Katharina A1 - Kotliar, Konstantin A1 - Schmidt, Tobias Philip A1 - Kuerten, David A1 - Hescheler, Jürgen A1 - Bruecken, Anne A1 - Schmidt-Trucksäss, Arno A1 - Neumaier, Felix A1 - Wiesmann, Martin A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis JF - Frontiers in Neurology N2 - Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus. Y1 - 2021 U6 - https://doi.org/10.3389/fneur.2021.690183 SN - 1664-2295 VL - 12 IS - 12 SP - 1 EP - 15 ER - TY - CHAP A1 - Kotliar, Konstantin ED - Pallikaris, I. ED - Tsilimbaris, M. K. ED - Dastiridou, A. I. T1 - Ocular rigidity: clinical approach T2 - Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye N2 - The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications. KW - Coefficient of ocular rigidity KW - Eyeball KW - Corneo-scleral shell KW - Pressure-volume relationship KW - Differential tonometry Y1 - 2021 SN - 978-3-030-64422-2 U6 - https://doi.org/10.1007/978-3-030-64422-2_2 SP - 15 EP - 43 PB - Springer CY - Cham ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Borchardt, Ralf A1 - Ritter, Philine A1 - Groß‑Hardt, Sascha A1 - Meyns, Bart A1 - Verbelen, Tom A1 - Steinseifer, Ulrich A1 - Kaufmann, Tim A. S. A1 - Engelmann, Ulrich M. T1 - Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input JF - Scientific Reports N2 - Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-96397-2 SN - 2045-2322 VL - 11 IS - Art. No. 16800 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Welden, Rene A1 - Nagamine Komesu, Cindy A. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment JF - Electrochemical Science Advances N2 - Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin. KW - enzymatic biosensor KW - penicillin KW - penicillinase KW - photoelectrochemistry KW - titanium dioxide photoanode Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100131 SN - 2698-5977 N1 - Corresponding author: Michael J. Schöning VL - 2 IS - 4 SP - 1 EP - 5 PB - Wiley-VCH CY - Weinheim ER -