TY - CHAP A1 - Janotte, N. A1 - Feckler, G. A1 - Kötter, Jens A1 - Decker, Stefan A1 - Herrmann, Ulf A1 - Schmitz, Mark A1 - Lüpfert, E. T1 - Dynamic performance evaluation of the HelioTrough® collector demonstration loop : towards a new benchmark in parabolic trough qualification T2 - SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49) Y1 - 2014 SN - 978-1-63266-904-9 U6 - https://doi.org/10.1016/j.egypro.2014.03.012 SN - 1876-6102 N1 - Nebent.: Power and Chemical Energy Systems concentrating solar power SP - 109 EP - 117 PB - Curran CY - Red Hook, NY ER - TY - JOUR A1 - Gorzalka, Philip A1 - Schmiedt, Jacob Estevam A1 - Schorn, Christian T1 - Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery JF - Buildings N2 - An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment. KW - Modelica KW - heat transfer coefficient KW - heat demand KW - building energy modelling KW - building energy simulation Y1 - 2021 U6 - https://doi.org/10.3390/buildings11090380 SN - 2075-5309 N1 - This article belongs to the Special Issue "Application of Computer Technology in Buildings" VL - 11 IS - 9 PB - MDPI CY - Basel ER -