TY - JOUR A1 - Varga, Laszlo A1 - Davinson, Thomas A1 - Glorius, Jan A1 - Jurado, Beatrix A1 - Langer, Christoph A1 - Lederer-Woods, Claudia A1 - Litvinov, Yuri A. A1 - Reifarth, Rene A1 - Slavkovska, Zuzana A1 - Stöhlker, Thomas A1 - Woods, Phil J. A1 - Xing, Yuan Ming T1 - Towards background-free studies of capture reaction in a heavy-ion storage ring JF - Journal of Physics: Conference Series N2 - Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously. Y1 - 2020 VL - 1668 IS - Art 012046 PB - IOP CY - Bristol ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Albracht, Kirsten A1 - Abel, Thomas A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs JF - Journal of Electromyography and Kinesiology N2 - Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA. Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2020.102402 SN - 1050-6411 VL - 51 IS - Article 102402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wollbrink, Moritz A1 - Maslo, Semir A1 - Zimmer, Daniel A1 - Abbas, Karim A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Clamping and substrate plate system for continuous additive build-up and post-processing of metal parts JF - Procedia CIRP N2 - The manufacturing share of laser powder bed fusion (L-PBF) increases in industrial application, but still many process steps are manually operated. Additionally, it is not possible to achieve tight dimensional tolerances or low surfaces roughness. Hence, a process chain has to be set up to combine additive manufacturing (AM) with further machining technologies. To achieve a continuous workpiece flow as basis for further industrialization of L-PBF, the paper presents a novel substrate system and its application on L-PBF machines and post-processing. The substrate system consists of a zero-point clamping system and a matrix-like interface of contact pins to be substantially connected to the workpiece within the L-PBF process. Y1 - 2020 U6 - https://doi.org/10.1016/j.procir.2020.04.015 SN - 2212-8271 VL - 93 SP - 108 EP - 113 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kopp, Alexander A1 - Schunck, Laura A1 - Gosau, Martin A1 - Smeets, Ralf A1 - Burg, Simon A1 - Fuest, Sandra A1 - Kröger, Nadja A1 - Zinser, Max A1 - Krohn, Sebastian A1 - Behbahani, Mehdi A1 - Köpf, Marius A1 - Lauts, Lisa A1 - Rutkowski, Rico T1 - Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes JF - International Journal of Molecular Sciences N2 - In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live–dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes. Y1 - 2020 U6 - https://doi.org/10.3390/ijms21186704 SN - 1422-0067 N1 - Special issue: Optimization of Biomaterials for Reconstructive and Regenerative Medicine VL - 21 IS - 18 art. no. 6704 PB - MDPI CY - Basel ER - TY - JOUR A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Lowis, Carsten A1 - Schöning, Michael Josef T1 - Towards a multi-enzyme capacitive field-effect biosensor by comparative study of drop-coating and nano-spotting technique JF - Sensors N2 - Multi-enzyme immobilization onto a capacitive field-effect biosensor by nano-spotting technique is presented. The nano-spotting technique allows to immobilize different enzymes simultaneously on the sensor surface with high spatial resolution without additional photolithographical patterning. The amount of applied enzymatic cocktail on the sensor surface can be tailored. Capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors with Ta2O5 as pH-sensitive transducer layer have been chosen to immobilize the three different (pL droplets) enzymes penicillinase, urease, and glucose oxidase. Nano-spotting immobilization is compared to conventional drop-coating method by defining different geometrical layouts on the sensor surface (fully, half-, and quarter-spotted). The drop diameter is varying between 84 µm and 102 µm, depending on the number of applied drops (1 to 4) per spot. For multi-analyte detection, penicillinase and urease are simultaneously nano-spotted on the EIS sensor. Sensor characterization was performed by C/V (capacitance/voltage) and ConCap (constant capacitance) measurements. Average penicillin, glucose, and urea sensitivities for the spotted enzymes were 81.7 mV/dec, 40.5 mV/dec, and 68.9 mV/dec, respectively. Y1 - 2020 SN - 1424-8220 U6 - https://doi.org/10.3390/s20174924 N1 - Special issue: Multisensor Systems and Signal Processing in Analytical Chemistry VL - 20 IS - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gazda, Quentin A1 - Maurischat, Andreas T1 - Special functions and Gauss-Thakur sums in higher rank and dimension Y1 - 2020 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Meskemper, Joshua A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants JF - European Journal of Applied Physiology N2 - Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training. Y1 - 2020 U6 - https://doi.org/10.1007/s00421-020-04373-x SN - 1439-6327 IS - 120 SP - 1403 EP - 1415 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - https://doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmidt, Aaron C. A1 - Turgut, Hatice A1 - Le, Dao A1 - Beloqui, Ana A1 - Delaittre, Guillaume T1 - Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics JF - Polymer Chemistry N2 - The SG1-mediated solution polymerization of methyl methacrylate (MMA) and oligo(ethylene glycol) methacrylate (OEGMA, Mₙ = 300 g mol⁻¹) in the presence of a small amount of functional/reactive styrenic comonomer is investigated. Moieties such as pentafluorophenyl ester, triphenylphosphine, azide, pentafluorophenyl, halide, and pyridine are considered. A comonomer fraction as low as 5 mol% typically results in a controlled/living behavior, at least up to 50% conversion. Chain extensions with styrene for both systems were successfully performed. Variation of physical properties such as refractive index (for MMA) and phase transition temperature (for OEGMA) were evaluated by comparing to 100% pure homopolymers. The introduction of an activated ester styrene derivative in the polymerization of OEGMA allows for the synthesis of reactive and hydrophilic polymer brushes with defined thickness. Finally, using the example of pentafluorostyrene as controlling comonomer, it is demonstrated that functional PMMA-b-PS are able to maintain a phase separation ability, as evidenced by the formation of nanostructured thin films. Y1 - 2020 U6 - https://doi.org/10.1039/C9PY01458F VL - 11 IS - 2 SP - 593 EP - 604 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Welden, Rene A1 - Schöning, Michael Josef A1 - Wagner, Patrick H. A1 - Wagner, Torsten T1 - Light-Addressable Electrodes for Dynamic and Flexible Addressing of Biological Systems and Electrochemical Reactions JF - Sensors N2 - In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor–electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types. Y1 - 2020 U6 - https://doi.org/10.3390/s20061680 SN - 1424-8220 VL - 20 IS - 6 PB - MDPI CY - Basel ER -