TY - JOUR A1 - Hoffstadt, Kevin A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Bonatelli, Maria A1 - Kumar, Vivekanantha A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation JF - Bioengineering KW - methanation KW - plug flow reactor KW - bubble column KW - biomethane KW - P2G Y1 - 2024 U6 - https://doi.org/10.3390/bioengineering11020165 SN - 2306-5354 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Blaneck, Patrick Gustav A1 - Bialonski, Stephan T1 - Speaker Attribution in German Parliamentary Debates with QLoRA-adapted Large Language Models JF - Journal for language technology and computational linguistics : JLCL N2 - The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems. KW - large language models KW - German KW - speaker attribution KW - semantic role labeling Y1 - 2024 U6 - https://doi.org/10.21248/jlcl.37.2024.244 SN - 2190-6858 VL - 37 IS - 1 PB - Gesellschaft für Sprachtechnologie und Computerlinguistik CY - Regensburg ER - TY - JOUR A1 - Hafidi, Youssef A1 - El Hatka, Hicham A1 - Schmitz, Dominik A1 - Krauss, Manuel A1 - Pettrak, Jürgen A1 - Biel, Markus A1 - Ittobane, Najim T1 - Sustainable soil additives for water and micronutrient supply: swelling and chelating properties of polyaspartic acid hydrogels utilizing newly developed crosslinkers JF - Gels N2 - Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10% vs. 20%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth. KW - micronutrients KW - swelling properties KW - biodegradable polymers KW - hydrogels KW - superabsorbent polymers KW - glycine KW - polyaspartic acid Y1 - 2024 U6 - https://doi.org/10.3390/gels10030170 SN - 2310-2861 VL - 10 IS - 3 SP - Artikel 170 PB - MDPI CY - Basel ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - https://doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Karschuck, Tobias A1 - Poghossian, Arshak A1 - Ser, Joey A1 - Tsokolakyan, Astghik A1 - Achtsnicht, Stefan A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage JF - Sensors and Actuators B: Chemical N2 - Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed. KW - Field-effect biosensor KW - Capacitive model KW - Enzyme coverage KW - Multianalyte detection KW - Penicillin Y1 - 2024 U6 - https://doi.org/10.1016/j.snb.2024.135530 SN - 0925-4005 (Print) SN - 1873-3077 (Online) N1 - Corresponding Author: Michael J. Schöning VL - 408 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Aliazizi, Fereshteh A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion JF - Biosensors and Bioelectronics N2 - As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the “real” bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an “imprinting factor” of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D). KW - Surface imprinted polymer KW - E. coli detection KW - Photolithographic mimics KW - Master stamp KW - Quartz crystal microbalance Y1 - 2024 U6 - https://doi.org/10.1016/j.bios.2024.116491 SN - 1873-4235 (eISSN) SN - 0956-5663 N1 - Corresponding author: Michael J. Schöning VL - 261 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haeger, Gerrit A1 - Jolmes, Tristan A1 - Oyen, Sven A1 - Jaeger, Karl-Erich A1 - Bongaerts, Johannes A1 - Schörken, Ulrich A1 - Siegert, Petra T1 - Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis JF - Applied Microbiology and Biotechnology N2 - N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC–MS and NMR. KW - Chaperone KW - Biocatalysis KW - Aminoacylase KW - Acylation KW - Acyl-amino acids KW - Biosurfactants Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12868-8 SN - 1432-0614 N1 - Corresponding author: Petra Siegert IS - 108 PB - Springer CY - Berlin ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary JF - Inverse Problems and Imaging N2 - In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method. Y1 - 2024 U6 - https://doi.org/10.3934/ipi.2023051 SN - 1930-8337 SN - 1930-8345 (eISSN) VL - 18 IS - 3 SP - 708 EP - 729 PB - AIMS CY - Springfield ER - TY - JOUR A1 - Chwallek, Constanze A1 - Nawrath, Lara A1 - Krastina, Anzelika A1 - Bruksle, Ieva T1 - Supportive research on sustainable entrepreneurship and business practices JF - SECA Sustainable Entrepreneurship for Climate Action Y1 - 2024 SN - 978-952-316-514-4 (pdf) SN - 2954-1654 (on-line publication) IS - 3 PB - Lapland University of Applied Sciences Ltd CY - Rovaniemi ER -