TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Teeman, Eric A1 - Slabu, Iona A1 - Krishnan, Kannan M. T1 - Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - https://doi.org/10.1016/j.jmmm.2018.09.041 SN - 0304-8853 VL - 471 IS - 1 SP - 450 EP - 456 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Seifert, Julian A1 - Mues, Benedikt A1 - Roitsch, Stefan A1 - Ménager, Christine A1 - Schmidt, Annette M. A1 - Slabu, Ioana T1 - Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - https://doi.org/10.1016/j.jmmm.2018.09.113 SN - 0304-8853 VL - 471 IS - 1 SP - 486 EP - 494 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Roeth, Anjali A.J. A1 - Eberbeck, Dietmar A1 - Buhl, Eva Miriam A1 - Neumann, Ulf Peter A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells JF - Scientific Reports N2 - Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-31553-9 SN - 2045-2322 VL - 8 IS - 1 SP - Article number 13210 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Draack, Sebastian A1 - Viereck, Thilo A1 - Frank, A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications JF - IEEE Magnetic Letters N2 - Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23% for agglomerated MNP in suspension and a decrease by up to 28% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy. Y1 - 2018 U6 - https://doi.org/10.1109/LMAG.2018.2879034 SN - 1949-307X VL - 9 IS - Article number 8519617 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Baumann, Martin A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia JF - Current Directions in Biomedical Engineering Y1 - 2017 U6 - https://doi.org/10.1515/cdbme-2017-0096 SN - 2364-5504 VL - 3 IS - 2 SP - 457 EP - 460 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Chen, Chao A1 - Jost, Peter A1 - Volker, Hanno A1 - Kaminski, Marvin A1 - Wirtssohn, Matti R. A1 - Engelmann, Ulrich M. A1 - Krüger, K. A1 - Schlich, Franziska F. A1 - Schlockermann, Carl A1 - Lobo, Ricardo P.S.M. A1 - Wuttig, Matthias T1 - Dielectric properties of amorphous phase-change materials JF - Physical Review B Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.95.094111 SN - 2469-9950 VL - 95 IS - 9 SP - Article number 094111 ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria JF - Sensors N2 - Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process. Y1 - 2019 U6 - https://doi.org/10.3390/s19214692 SN - 1424-8220 VL - 19 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Karschuck, T. L. A1 - Filipov, Y. A1 - Bollella, P. A1 - Schöning, Michael Josef A1 - Katz, E. T1 - Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction JF - International Journal of Unconventional Computing N2 - Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular “toolbox” as a new example of Boolean logic gates based on enzyme reactions. Y1 - 2019 SN - 1548-7199 VL - 14 IS - 3-4 SP - 235 EP - 242 PB - Old City Publishing CY - Philadelphia ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Albracht, Kirsten A1 - Abel, Thomas A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs JF - Journal of Electromyography and Kinesiology N2 - Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA. Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2020.102402 SN - 1050-6411 VL - 51 IS - Article 102402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kopp, Alexander A1 - Schunck, Laura A1 - Gosau, Martin A1 - Smeets, Ralf A1 - Burg, Simon A1 - Fuest, Sandra A1 - Kröger, Nadja A1 - Zinser, Max A1 - Krohn, Sebastian A1 - Behbahani, Mehdi A1 - Köpf, Marius A1 - Lauts, Lisa A1 - Rutkowski, Rico T1 - Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes JF - International Journal of Molecular Sciences N2 - In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live–dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes. Y1 - 2020 U6 - https://doi.org/10.3390/ijms21186704 SN - 1422-0067 N1 - Special issue: Optimization of Biomaterials for Reconstructive and Regenerative Medicine VL - 21 IS - 18 art. no. 6704 PB - MDPI CY - Basel ER -