TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - CHAP A1 - Hoegen, Anne von A1 - Doncker, Rik W. De A1 - Rütters, René T1 - Teaching Digital Control of Operational Amplifier Processes with a LabVIEW Interface and Embedded Hardware T2 - The 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan Y1 - 2020 U6 - http://dx.doi.org/10.23919/ICEMS50442.2020.9290928 SP - 1117 EP - 1122 ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Resilience enhancement of critical infrastructure – graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt T2 - 14th WCEAM Proceedings N2 - Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS. KW - Resilient infrastructure KW - Resilience assessment KW - Resilience metric graph theory KW - Water distribution system KW - Case study Y1 - 2020 SN - 978-3-030-64228-0 SN - 978-3-030-64227-3 U6 - http://dx.doi.org/10.1007/978-3-030-64228-0_13 N1 - 14th WCEAM Proceedings. World Congress on Engineering Asset Management, 28-31 July 2019, Singapore Part of the Lecture Notes in Mechanical Engineering book series (LNME) SP - 137 EP - 149 PB - Springer CY - Cham ER - TY - CHAP A1 - Kirsch, Maximilian A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Integrating golog++ and ROS for Practical and Portable High-level Control T2 - 12th International Conference on Agents and Artificial Intelligence Y1 - 2020 U6 - http://dx.doi.org/10.5220/0008984406920699 ER - TY - CHAP A1 - Dinghofer, Kai A1 - Hartung, Frank T1 - Analysis of Criteria for the Selection of Machine Learning Frameworks T2 - 2020 International Conference on Computing, Networking and Communications (ICNC) Y1 - 2020 U6 - http://dx.doi.org/10.1109/ICNC47757.2020.9049650 SP - 373 EP - 377 ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa Y1 - 2020 SN - 978-1-7281-4162-6 U6 - http://dx.doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 SP - 1 EP - 6 ER - TY - CHAP A1 - Elgamal, Abdelrahman A1 - Heuermann, Holger T1 - Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications T2 - 2020 German Microwave Conference (GeMiC), Cottbus, Germany, 2020 Y1 - 2020 SN - 978-3-9820397-1-8 SP - 124 EP - 127 ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - http://dx.doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV) July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE ER - TY - CHAP A1 - Müller, Tim M. A1 - Schmitt, Andreas A1 - Leise, Philipp A1 - Meck, Tobias A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Pfetsch, Marc E. T1 - Validation of an optimized resilient water supply system T2 - Uncertainty in Mechanical Engineering N2 - Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems. KW - Optimization KW - Mixed-integer nonlinear programming KW - Water distribution system KW - Resilience KW - Validation Y1 - 2021 SN - 978-3-030-77255-0 SN - 978-3-030-77256-7 U6 - http://dx.doi.org/10.1007/978-3-030-77256-7_7 N1 - Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7–8, 2021 SP - 70 EP - 80 PB - Springer CY - Cham ER - TY - CHAP A1 - Hüning, Felix T1 - Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students T2 - Blended Learning in Engineering Education: challenging, enlightening – and lasting? N2 - The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher’s observations of the student’s learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching. Y1 - 2021 SN - 978-2-87352-023-6 N1 - SEFI 49th Annual Conference Technische Universität Berlin (online), 13 – 16 September 2021 SP - 1405 EP - 1409 ER -