TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Tim, Sieker A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnology and bioprocess engineering – from the first ullmann's article to recent trends JF - ChemBioEng Reviews N2 - For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/cben.201500008 VL - 2 IS - 3 SP - 175 EP - 184 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Hahn, Thomas A1 - Kelly, Svenja A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Ulber, Roland ED - Hans-Jörg, Bart ED - Pilz, Stephan T1 - Extraction of lignocellulose and algae for the production of bulk and fine chemicals T2 - Industrial scale natural products extraction Y1 - 2011 SN - 978-3-527-32504-7 (Print) SN - 978-3-527-63512-2 (Online) U6 - http://dx.doi.org/10.1002/9783527635122 SP - 221 EP - 245 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Muffler, Kai A1 - Poth, Sabastian A1 - Sieker, Tim A1 - Tippkötter, Nils A1 - Ulber, Roland A1 - Sell, Dieter ED - Moo-Young, Murray T1 - Bio-feedstocks T2 - Comprehensive biotechnology : principles and practices in industry, agcriculture, medicine and the environment. Volume 2: Engineering fundamentals of biotechnology Y1 - 2011 SN - 978-0-444-53352-4 U6 - http://dx.doi.org/10.1016/B978-0-08-088504-9.00088-X SP - 93 EP - 101 PB - Elsevier CY - Amsterdam ET - 2. edition ER - TY - CHAP A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Ulber, Roland ED - Timmis, Kenneth N. T1 - Chemical feedstocks and fine chemicals from other substrates T2 - Handbook of hydrocarbon and lipid microbiology. Volume 4: Consequences of microbial interactions with hydrocarbons, oils and lipids. - (Springer reference) Y1 - 2010 SN - 978-3-540-77588-1 U6 - http://dx.doi.org/10.1007%2F978-3-540-77587-4_214 SP - 2891 EP - 2902 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Sieker, Tim A1 - Neuner, Andreas A1 - Dimitrova, Darina A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Bart, Hans-Jörg A1 - Heinzle, Elmar A1 - Ulber, Roland T1 - Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development JF - Engineering in Life Sciences N2 - Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step. Y1 - 2011 U6 - http://dx.doi.org/10.1002/elsc.201000160 N1 - Special Issue "Bioprocess‐oriented plant design" VL - 11 IS - 4 SP - 436 EP - 442 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Thiel, Alexander A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Hruschka, Steffen M. A1 - Ulber, Roland T1 - A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal JF - Journal of Chemical Technology and Biotechnology N2 - BACKGROUND Currently, several techniques exist for the downstream processing of protein, phytic acid and sinapic acid from rapeseed and rapeseed meal, but no technique has been developed to separate all of the components in one process. In this work, two new downstream processing strategies focusing on recovering sinapic acid, phytic acid and protein from rapeseed meal were established. RESULTS The sinapic acid content was enhanced by a factor of 4.5 with one method and 5.1 with the other. The isolation of sinapic acid was accomplished using a zeolite-based adsorbent with high adsorptive and optimal desorption characteristics. Phytic acid was isolated using the anion-exchange resin Purolite A200®. In addition, the processes resulted in two separated protein fractions. The ratios of globulin and albumin ratio to the total protein were 59.2% and 40.1%, respectively. The steps were then combined in two different ways: (a) a ‘sequential process’ using the zeolite and A200 in batch processes; and (b) a ‘parallel process’ using only A200 in a chromatographic system to separate all of the compounds. CONCLUSIONS It can be concluded that isolation of all three components was possible in both processes. These could enhance the added value of current processes using rapeseed meal as a protein source. © 2015 Society of Chemical Industry Y1 - 2015 U6 - http://dx.doi.org/10.1002/jctb.4664 VL - 90 IS - 11 SP - 1999 EP - 2006 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Wiesen, Sebastian A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Adsorption of fatty acids to layered double hydroxides in aqueous systems JF - Adsorption N2 - Due to their anion exchange characteristics, layered double hydroxides (LDHs) are suitable for the detoxification of aqueous, fatty acid containing fermentation substrates. The aim of this study is to examine the adsorption mechanism, using crude glycerol from plant oil esterification as a model system. Changes in the intercalation structure in relation to the amount of fatty acids adsorbed are monitored by X-ray diffraction and infra-red spectroscopy. Additionally, calcination of LDH is investigated in order to increase the binding capacity for fatty acids. Our data propose that, at ambient temperature, fatty acids can be bound to the hydrotalcite by adsorption or in addition by intercalation, depending on fatty acid concentration. The adsorption of fatty acids from crude glycerol shows a BET-like behavior. Above a fatty acid concentration of 3.5 g L−1, intercalation of fatty acids can be shown by the appearance of an increased interlayer spacing. This observation suggests a two phase adsorption process. Calcination of LDHs allows increasing the binding capacity for fatty acids by more than six times, mainly by reduction of structural CO32−. Y1 - 2015 VL - 21 IS - 6-7 SP - 459 EP - 466 PB - Springer CY - Berlin ER -