TY - JOUR A1 - Bung, Daniel B. T1 - Non-intrusive detection of air–water surface roughness in self-aerated chute flows JF - Journal of hydraulic research Y1 - 2013 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 51 IS - Iss. 3 SP - 322 EP - 329 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Initial stage of two-dimensional dam-break waves: laboratory versus VOF JF - Journal of hydraulic research N2 - Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found. KW - VOF KW - PIV KW - physical model KW - numerical model KW - drag force KW - dam-break Y1 - 2012 U6 - http://dx.doi.org/10.1080/00221686.2011.639981 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - 50 IS - 1 SP - 89 EP - 97 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bung, Daniel B. T1 - Developing flow in skimming flow regime on embankment stepped spillways JF - Journal of hydraulic research Y1 - 2011 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 49 IS - Iss. 5 SP - 639 EP - 648 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Leandro, J. A1 - Bung, Daniel B. A1 - Carvalho, R. T1 - Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods JF - Experiments in fluids Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00348-014-1732-6 SN - 0723-4864 (Print) ; 1432-1114 (Online) IS - 55 SP - Art. 1732 PB - Springer Nature CY - Heidelberg ER - TY - JOUR A1 - Lopes, Pedro A1 - Leandro, Jorge A1 - Carvalho, Rita F. A1 - Bung, Daniel B. T1 - Alternating skimming flow over a stepped spillway JF - Environmental Fluid Mechanics Y1 - 2017 U6 - http://dx.doi.org/10.1007/s10652-016-9484-x SN - 1573-1510 VL - 17 IS - 2 SP - 303 EP - 322 PB - Springer CY - Berlin ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow JF - Environmental Modelling and Software N2 - Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.envsoft.2016.04.030 SN - 1364-8152 (electronic) VL - 82 SP - 218 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows: Instabilities growth, entrapped air and influence on the self-aeration onset JF - International Journal of Multiphase Flow N2 - Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air–water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.012 SN - 0301-9322 VL - 84 SP - 66 EP - 74 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Reformulating self-aeration in hydraulic structures: Turbulent growth of free surface perturbations leading to air entrainment JF - International Journal of Multiphase Flow N2 - A new formulation for the prediction of free surface dynamics related to the turbulence occurring nearby is proposed. This formulation, altogether with a breakup criterion, can be used to compute the inception of self-aeration in high velocity flows like those occurring in hydraulic structures. Assuming a simple perturbation geometry, a kinematic and a non-linear momentum-based dynamic equation are formulated and forces acting on a control volume are approximated. Limiting steepness is proposed as an adequate breakup criterion. Role of the velocity fluctuations normal to the free surface is shown to be the main turbulence quantity related to self-aeration and the role of the scales contained in the turbulence spectrum are depicted. Surface tension force is integrated accounting for large displacements by using differential geometry for the curvature estimation. Gravity and pressure effects are also contemplated in the proposed formulation. The obtained equations can be numerically integrated for each wavelength, hence resulting in different growth rates and allowing computation of the free surface roughness wavelength distribution. Application to a prototype scale spillway (at the Aviemore dam) revealed that most unstable wavelength was close to the Taylor lengthscale. Amplitude distributions have been also obtained observing different scaling for perturbations stabilized by gravity or surface tension. The proposed theoretical framework represents a new conceptualization of self-aeration which explains the characteristic rough surface at the non-aerated region as well as other previous experimental observations which remained unresolved for several decades. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.12.011 SN - 0301-9322 VL - 100 SP - 127 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe JF - Journal of Hydro-environment Research Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jher.2017.08.004 SN - 1570-6443 VL - 19 IS - 3 SP - 150 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kerpen, Nils B. A1 - Bung, Daniel B. A1 - Valero, Daniel A1 - Schlurmann, Torsten T1 - Energy dissipation within the wave run-up at stepped revetments JF - Journal of Ocean University of China Y1 - 2017 U6 - http://dx.doi.org/10.1007/s11802-017-3355-z SN - 1993-5021 VL - 16 IS - 4 SP - 649 EP - 654 PB - Springer CY - Berlin ER -