TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution JF - Applied physics express : APEX N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained. Y1 - 2014 U6 - http://dx.doi.org/10.7567/APEX.7.067301 SN - 1882-0786 (E-Journa); 1882-0778 (Print) VL - 7 IS - 6 SP - 067301-4 PB - IOP CY - Bristol ER - TY - CHAP A1 - Poghossian, Arshak A1 - Weiland, Maryam A1 - Schöning, Michael Josef ED - Lvova, Larisa ED - Kirsanov, Dmitry ED - di Natale, Corrado ED - Legin, Audrey T1 - Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing T2 - Multisensor system for chemical analysis : materials and sensors N2 - An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events. Y1 - 2014 SN - 978-981-4411-15-8 ; 978-981-4411-16-5 U6 - http://dx.doi.org/10.1201/b15491-11 SP - 333 EP - 373 PB - Jenny Stanford Publishing CY - Singapore ET - 1 ER - TY - JOUR A1 - Wagner, Patrick A1 - Doll, Theodor A1 - Schöning, Michael Josef T1 - Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Schöning (eds.) JF - Physica status solidi (A) : Applications and materials science Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201470241 SN - 1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1339 EP - 1339 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Theoretical study and simulation of light-addressable potentiometric sensors JF - Physica status solidi (A) : applications and materials N2 - The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330354 SN - 0031-8965 VL - 211 IS - 6 SP - 1467 EP - 1472 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Riedel, Marc A1 - Kartchemnik, Julia A1 - Schöning, Michael Josef A1 - Lisdat, Fred T1 - Impedimetric DNA detection – steps forward to sensorial application JF - Analytical chemistry N2 - This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away. Y1 - 2014 U6 - http://dx.doi.org/10.1021/ac501800q SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 (2014) IS - 15 SP - 7867 EP - 7874 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution JF - Sensors and actuators B: Chemical N2 - As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2014.08.016 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 204 SP - 659 EP - 665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Khaydukova, M. M. A1 - Zadorozhnaya, O. A. A1 - Kirsanov, D. O. A1 - Iken, Heiko A1 - Rolka, David A1 - Schöning, Michael Josef A1 - Babain, V. A. A1 - Vlasov, Yu. G. A1 - Legin, A. V. T1 - Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes JF - Russian journal of applied chemistry N2 - The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution. Y1 - 2014 U6 - http://dx.doi.org/10.1134/S1070427214030112 SN - 1608-3296 (E-Journal); 1070-4272 (Print) VL - 87 IS - 3 SP - 307 EP - 314 PB - Springer CY - Dordrecht ER - TY - CHAP A1 - Buniatyan, V. V. A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Rustamyan, L. G. A1 - Hovnikyan, H. H. T1 - Equivalent circuit and optimization of impedance characteristics of an electrolyte conductivity sensor T2 - Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering Y1 - 2014 VL - Iss. 17 IS - No. 1 SP - 69 EP - 76 ER - TY - CHAP A1 - Kirchner, Patrick A1 - Reisert, Steffen A1 - Schöning, Michael Josef T1 - Calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes T2 - Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15) N2 - For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described. KW - Calorimetric gas sensor KW - Hydrogen peroxide KW - Multi-sensor system Y1 - 2014 SN - 978-3-642-54518-4 (Print) ; 978-3-642-54519-1 (Online) U6 - http://dx.doi.org/10.1007/5346_2013_51 SP - 279 EP - 309 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Glück, Olaf A1 - Thust, Marion T1 - Electrochemical methods for the determination of chemical variables in aqueous media T2 - Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement Y1 - 2014 SN - 978-1-4398-4891-3 SP - 55-1 EP - 55-54 PB - CRC Pr. CY - Boca Raton, Fla. ER -