TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-013 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions N2 - The paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences. In 1990, AcUAS started developing the Dry-Low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application will be demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. The paper discusses the advances in Micromix research over the last three decades. KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - https://doi.org/10.1115/GT2020-16328 N1 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition September 21–25, 2020, Virtual, Online N1 - Paper No. GT2020-16328, V04BT04A069 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Zhang, G. A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Chanson, H. T1 - On the estimation of free-surface turbulence using ultrasonic sensors JF - Flow Measurement and Instrumentation N2 - Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed. Y1 - 2018 U6 - https://doi.org/10.1016/j.flowmeasinst.2018.02.009 SN - 0955-5986 VL - 60 SP - 171 EP - 184 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Oertel, M. A1 - Schlenkhoff, A. A1 - Schlurmann, Torsten ED - Obrusnik, Ivan T1 - Flash flood awareness and prevention in Germany T2 - Early warning for flash floods : international workshop, Praha 2011 : workshop proceedings Y1 - 2010 SN - 978-80-86690-91-9 SP - 34 EP - 40 ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - Proceedings of COMPDYN 2021 N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - https://doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021, 28-30 June 2021, Streamed from Athens, Greece, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - JOUR A1 - Bongaerts, Johannes A1 - Esser, Simon A1 - Lorbach, Volker A1 - Al-Momani, Lóay A1 - Müller, Michael A. A1 - Franke, Dirk A1 - Grondal, Christoph A1 - Kurutsch, Anja A1 - Bujnicki, Robert A1 - Takors, Ralf A1 - Raeven, Leon A1 - Wubbolts, Marcel A1 - Bovenberg, Roel A1 - Nieger, Martin A1 - Schürmann, Melanie A1 - Trachtmann, Natalie A1 - Kozak, Stefan A1 - Sprenger, Georg A. A1 - Müller, Michael T1 - Diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis JF - Angewandte Chemie International Edition Y1 - 2011 SN - 1521-3773 (E-Journal); 0570-0833 (Print); 1433-7851 (Print) VL - Vol. 50 IS - Iss. 34 SP - 7781 EP - 7786 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Gellert, Christoph A1 - Park, Jin A1 - Butenweg, Christoph T1 - Seismic safety verification of masonry structures T2 - Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universität Dresden]. Ed. by: Wolfram Jäger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11) Y1 - 2010 SN - 978-3-00-031381-3 SP - 813 EP - 822 PB - ARGE 8IMC Dresden CY - Radebeul ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel T1 - FlowCV - An open-source toolbox for computer vision applications in turbulent flows T2 - Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia Y1 - 2017 SN - 2521-716X SP - 5356 EP - 5365 ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - https://doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER -