TY - JOUR A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple near-earth asteroid rendezvous mission: Solar-sailing options JF - Advances in Space Research Y1 - 2017 U6 - https://doi.org/10.1016/j.asr.2017.10.017 SN - 0273-1177 IS - In Press, Corrected Proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel Bernhard T1 - Robust estimators for turbulence properties assessment Y1 - 2019 SP - 1 EP - 24 ER - TY - CHAP A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - SEP-Sample return from a main belt asteroid T2 - 30th International Electric Propulsion Conference N2 - By DLR-contact, sample return missions to the large main-belt asteroid “19, Fortuna” have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP. Y1 - 2007 SP - 1 EP - 11 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz T1 - Main Belt Asteroid Sample Return Mission Using Solar Electric Propulsion JF - Acta Astronautica. 63 (2008), H. 1-4 Y1 - 2008 SN - 0094-5765 N1 - International Astronautical Federation Congress <58, 2007, Hyderabad> ; International Astronautical Congress <58, 2007, Hyderabad> ; IAC-07-A3.5.07 SP - 91 EP - 101 ER - TY - JOUR A1 - Kezerashvili, Roman Ya A1 - Dachwald, Bernd T1 - Preface: Solar sailing: Concepts, technology, and missions II JF - Advances in Space Research Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2021.01.037 SN - 0273-1177 VL - 67 IS - 9 SP - 2559 EP - 2560 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - Sensitivity of phase detection techniques in aerated chute flows to hydraulic design parameters T2 - 2nd European IAHR congress : 27. - 29. June 2012, München Y1 - 2012 SN - 978-3-943683-03-5 SP - Artikelkennnummer: B15 PB - Lehrstuhl u. Versuchsanst. für Wasserbau u. Wasserwirtschaft d. TU München CY - München ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Spurmann, J. A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang T1 - Mission design for a SEP mission to saturn T2 - 60th International Astronautical Congress 2009 (IAC 2009) N2 - Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system. Y1 - 2009 SN - 978-1-61567-908-9 N1 - 12-16 October 2009, Daejeon, Republic of Korea. PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - GEN A1 - Machado, Patricia Almeida A1 - Dahmann, Peter A1 - Keimer, Jona A1 - Saretzki, Charlotte A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Stress profile and individual workload monitoring in general aviation pilots – an experiment’s setting T2 - 23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020 Y1 - 2020 U6 - https://doi.org/10.55225/hppa.156 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER - TY - JOUR A1 - Baumgartner, Werner A1 - Fidler, Florian A1 - Weth, Agnes A1 - Habbecke, Martin A1 - Jakob, Peter A1 - Butenweg, Christoph A1 - Böhme, Wolfgang T1 - Investigating the locomotion of the sandfish in desert sand using NMR-Imaging JF - PLOS ONE N2 - The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and not as a solid material. In this fluidised sand the sandfish is able to “swim” using its limbs. KW - magnetic resonance imaging KW - body limbs KW - swimming KW - lizards KW - deserts Y1 - 2008 U6 - https://doi.org/10.1371/journal.pone.0003309 SN - 1932-6203 VL - 3 IS - 10 PB - Plos CY - San Francisco, California, US ER -