TY - JOUR A1 - Savitskaya, Irina A1 - Zhantlessova, Sirina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Shokatayeva, Dina A1 - Sinyavsky, Yuriy A1 - Kushugulova, Almagul A1 - Digel, Ilya T1 - Prebiotic cellulose–pullulan matrix as a “vehicle” for probiotic biofilm delivery to the host large intestine JF - Polymers N2 - This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies. KW - immobilization KW - prebiotic KW - bacterial cellulose KW - biofilms KW - Lactobacillus rhamnosus GG Y1 - 2023 U6 - https://doi.org/10.3390/polym16010030 N1 - This article belongs to the Section "Polymer Composites and Nanocomposites" IS - 16(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J A1 - Paulsen, Gøran A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R T1 - Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing JF - Frontiers in physiology N2 - During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation. KW - achilles tendon KW - energy absorption KW - energy dissipation KW - mechanical buffer KW - stiffness Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00794 SN - 1664-042X IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Yang, Peng-Fei A1 - Kriechbaumer, Andreas A1 - Albracht, Kirsten A1 - Sanno, Maximilian A1 - Ganse, Bergita A1 - Koy, Timmo A1 - Shang, Peng A1 - brüggemann, Gert-Peter A1 - Müller, Lars Peter A1 - Rittweger, Jörn T1 - A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans JF - Journal of Orthopaedic Translation Y1 - 2014 U6 - https://doi.org/10.1016/j.jot.2014.07.078 SN - 2214-0328 SN - 2214-031X VL - 2 IS - 4 SP - 238 EP - 238 PB - Elsevier CY - Singapore ER - TY - INPR A1 - Ringers, Christa A1 - Bialonski, Stephan A1 - Solovev, Anton A1 - Hansen, Jan N. A1 - Ege, Mert A1 - Friedrich, Benjamin M. A1 - Jurisch-Yaksi, Nathalie T1 - Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves T2 - bioRxiv N2 - Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping. Y1 - 2021 U6 - https://doi.org/10.1101/2021.11.23.469646 N1 - Veröffentlicht in eLife 12:e77701 (https://doi.org/10.7554/eLife.77701). ER - TY - JOUR A1 - von Häfen, Hajo A1 - Krautwald, Clemens A1 - Stolle, Jacob A1 - Bung, Daniel Bernhard A1 - Goseberg, Nils T1 - Overland flow of broken solitary waves over a two-dimensional coastal plane JF - Coastal Engineering N2 - Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand. KW - Landslide tsunamis KW - Hazard assessment KW - Large scale tests KW - Overland flow KW - Solitary waves Y1 - 2022 U6 - https://doi.org/10.1016/j.coastaleng.2022.104125 SN - 1872-7379 VL - 175 IS - August PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Maurer, Florian A1 - Miskiw, Kim K. A1 - Acosta, Rebeca Ramirez A1 - Harder, Nick A1 - Sander, Volker A1 - Lehnhoff, Sebastian ED - Jorgensen, Bo Norregaard ED - Pereira da Silva, Luiz Carlos ED - Ma, Zheng T1 - Market abstraction of energy markets and policies - application in an agent-based modeling toolbox T2 - EI.A 2023: Energy Informatics N2 - In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework. KW - Energy market design KW - Agent-based simulation KW - Market modeling Y1 - 2023 SN - 978-3-031-48651-7 (Print) SN - 978-3-031-48652-4 (eBook) U6 - https://doi.org/10.1007/978-3-031-48652-4_10 N1 - Energy Informatics Academy Conference, 6-8 December 23, Campinas, Brazil. N1 - Part of the Lecture Notes in Computer Science book series (LNCS,volume 14468). SP - 139 EP - 157 PB - Springer CY - Cham ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - https://doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - https://doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER - TY - CHAP A1 - Lu, S. A1 - Beyer, K. A1 - Bosiljkov, V. A1 - Butenweg, Christoph A1 - D’Ayala, D. A1 - Degee, H. A1 - Gams, M. A1 - Klouda, J. A1 - Lagomarsino, S. A1 - Penna, A. A1 - Mojsilovic, N. A1 - da Porto, F. A1 - Sorrentino, L. A1 - Vintzileou, E. ED - Modena, Claudio ED - da Porto, F. ED - Valluzzi, M.R. T1 - Next generation of Eurocode 8, masonry chapter T2 - Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 N2 - This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date. Y1 - 2016 SN - 978-1-138-02999-6 (Print) SN - 9781315374963 (E-Book) SP - 695 EP - 700 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Becker, Meike A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Krombach, Gabriele A. A1 - Kremer, Ute A1 - Koppers, Benedikt A1 - Butenweg, Christoph A1 - Goemmel, Andreas A1 - Utting, Jane F. A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T JF - European Radiology N2 - Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT’s performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)%). Conclusions: ACT’s intrinsic insensitivity to interference from electromagnetic fields renders KW - Magnetic resonance imaging (MRI) KW - MR-stethoscope KW - Magnetic field strength KW - Left ventriular function KW - Cardiovascular MRI Y1 - 2010 U6 - https://doi.org/10.1007/s00330-009-1676-z SN - 1432-1084 (Onlineausgabe) SN - 0938-7994 (Druckausgabe) VL - 20 SP - 1344 EP - 1355 PB - Springer CY - Berlin ER -