TY - CHAP A1 - Wilke, Thomas ED - Merlotti, Andrea T1 - Planning Process of the Di Castellamonte’s Chapel of the Holy Shroud T2 - Carlo e Amedeo di Castellamonte : 1571-1683, ingegneri e architetti per i duchi di Savoia Y1 - 2016 SN - 978-88-98229-57-4 N1 - Architettura e potere ; 4 SP - 141 EP - 152 PB - Campisano editore CY - Rom ER - TY - CHAP A1 - Teixeira Boura, Cristiano José A1 - Niederwestberg, Stefan A1 - McLeod, Jacqueline A1 - Herrmann, Ulf A1 - Hoffschmidt, Bernhard T1 - Development of heat exchanger for high temperature energy storage with bulk materials T2 - AIP Conference Proceedings Y1 - 2016 U6 - https://doi.org/10.1063/1.4949106 VL - 1734 IS - 1 SP - 050008-1 EP - 050008-7 ER - TY - JOUR A1 - Bernecker, Andreas T1 - Divided we reform? Evidence from US welfare policies JF - Journal of Public Economics N2 - Divided government is often thought of as causing legislative deadlock. I investigate the link between divided government and economic reforms using a novel data set on welfare reforms in US states between 1978 and 2010. Panel data regressions show that, under divided government, a US state is around 25% more likely to adopt a welfare reform than under unified government. Several robustness checks confirm this counter-intuitive finding. Case study evidence suggests an explanation based on policy competition between governor, senate, and house. Y1 - 2016 U6 - https://doi.org/10.1016/j.jpubeco.2016.08.003 SN - 0047-2727 VL - 142 SP - 24 EP - 38 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Matcha, Heike ED - Herneoja, Aulikki ED - Österlund, Toni ED - Markkanen, Piia T1 - From Designing Buildings from Systems to Designing Systems for Buildings T2 - Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1 N2 - We study the novel possibilities computer aided design and production open up for the design of building systems. Such systems today can, via individualized mass production, consist of a larger number and more complex parts than previously and therefore be assembled into more complex wholes. This opens up the possibility of designing specialized systems specifically for single buildings. The common order of starting with a building system and designing a building using this system can be reversed to designing a building first and then developing a system specifically for that building. We present and discuss research that incorporates students design projects into research work and fosters links between research and teaching. KW - Building Systems KW - Parametric Design KW - Parametric Modelling KW - Structuralist Architecture Y1 - 2016 U6 - https://doi.org/10.52842/conf.ecaade.2016.1.237 N1 - Proceedings of the 34th eCAADe Conference, University of Oulu, Oulu, Finland, 22-26 August 2016. SP - 237 EP - 240 PB - ECAADe CY - Oulu, Finland ER - TY - THES A1 - Frotscher, Ralf T1 - Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem Y1 - 2016 N1 - Duisburg, Essen, Universität Duisburg-Essen, Diss., 2016 ER - TY - CHAP A1 - Rausch, Lea A1 - Leise, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Papadrakakis, M. ED - Ppadopoulos, V. ED - Stefanou, G. ED - Plevris, V. T1 - A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem T2 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering N2 - Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art. KW - Technical Operations Research KW - Mixed-Integer Nonlinear Optimisation KW - Solver Per- formance KW - Drinking Water Supply KW - System Design Problem Y1 - 2016 SN - 978-618-82844-0-1 N1 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, 5–10 June 2016.Crete Island, Greece SP - 8509 EP - 8527 ER - TY - BOOK A1 - Altherr, Lena T1 - Algorithmic System Design under Consideration of Dynamic Processes N2 - Nach Stand von Wissenschaft und Technik werden Komponenten hinsichtlich ihrer Eigenschaften, wie Lebensdauer oder Energieeffizienz, optimiert. Allerdings können selbst hervorragende Komponenten zu ineffizienten oder instabilen Systemen führen, wenn ihr Zusammenspiel nur unzureichend berücksichtigt wird. Eine Systembetrachtung schafft ein größeres Optimierungspotential - dem erhöhten Potential steht jedoch auch ein erhöhter Komplexitätsgrad gegenüber. Die vorliegende Arbeit ist im Rahmen des Sonderforschungsbereichs 805 entstanden, dessen Ziel die Beherrschung von Unsicherheit in Systemen des Maschinenbaus ist. Die Arbeit zeigt anhand eines realen Systems aus dem Bereich der Hydraulik, wie Unsicherheit in der Entwicklungsphase beherrscht werden kann. Hierbei ist neu, dass die durch den späteren Betrieb zu erwartende Systemdegradation eines jeden möglichen Systemvorschlags antizipiert werden kann. Dadurch können Betriebs- und Wartungskosten vorausgesagt und minimiert werden und durch eine optimale Betriebs- und Wartungsstrategie die Verfügbarkeit des Systems garantiert werden. Wesentliche Fragen bei der optimalen Auslegung des betrachteten hydrostatischen Getriebes sind dessen physikalische Modellierung, die Darstellung des Optimierungsproblems als gemischt-ganzzahliges lineares Programm, und dessen algorithmische Behandlung zur Lösungsfindung. Hierzu werden Heuristiken zum schnelleren Auffinden sinnvoller Systemtopologien vorgestellt und mittels mathematischer Dekomposition eine Bewertung des dynamischen Verschleiß- und Wartungsverlaufs möglicher Systemvorschläge vorgenommen. Die Arbeit stellt die Optimierung technischer Systeme an der Schnittstelle von Mathematik, Informatik und Ingenieurwesen sowohl gründlich als auch anschaulich und nachvollziehbar dar. KW - Mixed Integer Programming KW - Technical Operations Research KW - Optimization KW - System Design Y1 - 2016 SN - 978-3-8440-4848-3 PB - Shaker CY - Aachen ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. A1 - Pöttgen, Philipp ED - Lübbecke, Marco E. ED - Koster, Arie ED - Letmathe, Peter ED - Madlener, Reihard ED - Preis, Britta ED - Walther, Grit T1 - Designing a feedback control system via mixed-integer programming T2 - Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research N2 - Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap. KW - Optimal Topology KW - Controller Parameter KW - Level Control System KW - Technical Operation Research KW - Optimal Closed Loop Y1 - 2016 SN - 978-3-319-28695-2 U6 - https://doi.org/10.1007/978-3-319-28697-6_18 SP - 121 EP - 127 PB - Springer CY - Cham ER - TY - CHAP A1 - Leicht-Scholten, Carmen A1 - Steuer-Dankert, Linda A1 - Bouffier, Anna T1 - Facing Future Challenges: Building Engineers for Tomorrow T2 - Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016 N2 - Future engineers are increasingly confronted with the so-called Megatrends which are the big social challenges society has to cope with. These Megatrends, such as “Silver Society”, “Globalization”, “Mobility” and “Female Shift” require an application-oriented perspective on Diversity especially in the engineering field. Therefore, it is necessary to enable future engineers not only to look at the technical perspectives of a problem, but also to be able to see the related questions within societies they are developing their artefacts for. The aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. Bringing together technical knowledge and social competences which go beyond a mere training of the so-called “soft skills”, is a new approach followed at RWTH Aachen University, one of the leading technical universities in Germany. RWTH Aachen University has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. In the frame of a sustainable teaching concept the research group under the leadership of Prof. Carmen Leicht-Scholten has developed an approach which imparts a supplication-specific Gender and Diversity expertise to engineers. In workshops students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge in their special field of study and later work. To substantiate this, the course participants have to solve case studies from real life. The cases which are developed in collaboration with non-profit organizations and enterprises from economy rise the students to challenges which are inspired by professional life. Evaluation shows the success of this approach as well as an increasing demand for such teaching formats. KW - Diversity KW - Engineering Education KW - Gender KW - Higher Education Y1 - 2016 SN - 978-886292-705-5 SP - 32 EP - 37 ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Social responsibility and innovation - Key competencies for engineers T2 - ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November N2 - Engineers are of particular importance for the societies of tomorrow. The big social challenges society has to cope with in future, can only be mastered, if engineers link the development and innovation process closely with the requirements of people. As a result, in the frame of the innovation process engineers have to design and develop products for diverse users. Therefore, the consideration of diversity in this process is a core competence engineers should have. Implementing the consideration of diverse requirements into product design is also linked to the development of sustainable products and thus leads to social responsible research and development, the core concept formulated by the EU. For this reason, future engineers should be educated to look at the technical perspectives of a problem embedded in the related questions within societies they are developing their artefacts for. As a result, the aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. To match the competence profiles of future engineers to the global challenges and the resulting social responsibility, RWTH Aachen University, one of the leading technical universities in Germany, has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. The interdisciplinary teaching concept of the research group pursues an approach which imparts an application oriented Gender and Diversity expertise to future engineers. In the frame of an established teaching concept, which is a result of experiences and expertise of the research group, students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge into their later field of action. In the frame of the conference the institutional approach will be presented as well as the teaching concept which will be introduced by concrete course examples. KW - diversity KW - innovation KW - social responsible engineering KW - engineering education Y1 - 2016 SN - 978-84-617-5895-1 U6 - https://doi.org/10.21125/iceri.2016.0353 SN - 2340-1095 SP - 5967 EP - 5976 ER -