TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Cherstvy, Andrey G. A1 - Pedraza, Angela M. A1 - Ingebrandt, Sven A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling JF - Physica Status Solidi (a) N2 - Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100710 SN - 1862-6319 VL - 209 SP - 925 EP - 934 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Pedraza, A. M. A1 - Gandhi, D. A1 - Ingebrandt, S. A1 - Moritz, W. A1 - Schöning, Michael Josef T1 - An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing JF - Biosensors and Bioelectronics. 26 (2011), H. 6 Y1 - 2011 SN - 0956-5663 SP - 3023 EP - 3028 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Razavi, A. A1 - Williams, O. A. A1 - Bijnens, N. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing JF - Biosensors and Bioelectronics. 24 (2009), H. 5 Y1 - 2009 SN - 0956-5663 N1 - Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14-16, 2008 ; Zeitschrift früher u.d.T. : Biosensors SP - 1298 EP - 1304 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Razavi, Arash A1 - Besmehn, Astrid A1 - Bijnens, Nathalie A1 - Williams, Oliver A. A1 - Haenen, Ken A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Penicillin detection with nanocrystalline-diamond field-effect sensor JF - physica status solidi (a). 205 (2008), H. 9 Y1 - 2008 SN - 1862-6319 N1 - Special Issue: Hasselt Diamond Workshop 2008 - SBDD XIII SP - 2141 EP - 2145 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Moritz, Werner A1 - Schöning, Michael Josef T1 - Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing JF - Physica Status Solidi (A). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 884 EP - 890 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Christiaens, P. A1 - Williams, O. A. A1 - Wagner, P. A1 - Haenen, K. T1 - Feldeffektsensor auf nanokristalliner Diamantbasis JF - Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. März 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik Y1 - 2008 SN - 978-3-18-092011-5 N1 - VDI-Berichte ; 2011 ; Sensoren und Messsysteme 2008, 14. GMA/ITG-Fachtagung, VDI/VDE- Gesellschaft Mess- und Automatisierungstechnik, + CD-ROM, Ludwigsburg, DE, 11.-12. Mar, 2008 SP - 549 EP - 558 PB - VDI-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Werner, Moritz A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Capacitance–voltage and impedance-spectroscopy characteristics of nanoplate EISOI capacitors JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1327 EP - 1332 PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Abulnaga, El-Hussiny A1 - Pinkenburg, Olaf A1 - Schiffels, Johannes A1 - E-Refai, Ahmed A1 - Buckel, Wolfgang A1 - Selmer, Thorsten T1 - Effect of an Oxygen-Tolerant Bifurcating Butyryl Coenzyme A Dehydrogenase/Electron-Transferring Flavoprotein Complex from Clostridium difficile on Butyrate Production in Escherichia coli JF - Journal of bacteriology Y1 - 2013 SN - 1098-5530 [E-Journal] SN - 0021-9193 [Print] VL - 195 IS - 16 SP - 3704 EP - 3713 ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Neuendorf, Christian A1 - Faßbender, Tobias A1 - Nölke, Greta A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim A1 - Schröper, Florian T1 - Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection JF - Plos One N2 - Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin’s B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml. Y1 - 2019 U6 - http://dx.doi.org/10.1371/journal.pone.0219356 SN - 1932-6203 VL - 14 IS - 7 PB - Plos CY - San Francisco ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Pourshahidi, Ali Mohammad A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique JF - Sensors N2 - In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles’ nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil’s signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements. KW - frequency mixing magnetic detection KW - magnetic sandwich immunoassay KW - multiparametric immunoassays Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19112599 SN - 1424-8220 VL - 19 IS - 11 PB - MDPI CY - Basel ER -