TY - JOUR A1 - Mertens, Josef A1 - Kelm, R. A1 - Velden, A. van der T1 - Interdisziplinäre Auslegung eines Verkehrsflugzeugflügels JF - DGLR-Jahrbuch 1999 Bd. 3 Y1 - 1999 N1 - DGLR-JT99-156 SP - 1605 EP - 1610 ER - TY - JOUR A1 - Mertens, Josef A1 - Klevenhusen, K. D. A1 - Jakob, H. T1 - Accurate Transonic Wave Drag Prediction Using Simple Physical Models JF - AIAA-Journal. 25 (1987), H. 6 Y1 - 1987 SN - 0001-1452 SP - 799 EP - 805 ER - TY - PAT A1 - Mertens, Josef A1 - Lajain, Henri T1 - Method of fabricating leading edge nose structures of aerodynamic surfaces : patent no.: US 6,415,510 B2 ; date of patent: Jul. 9, 2002 Y1 - 2002 N1 - Volltext auch in der Datenbank http://publikationen.dpma.de/ zu finden unter der Nummer US000006415510B2 PB - United States Patent and Trademark Office CY - [Washington, DC] ER - TY - JOUR A1 - Mertens, Josef A1 - Röger, Wolf T1 - F-Schlepp: Problem Taumelschwingung JF - Aerokurier. 44 (2000), H. 10 Y1 - 2000 SN - 0341-1281 N1 - in der Bereichsbibliothek unter der Signatur 23 Z 391-2000 SP - 73 EP - 73 ER - TY - PAT A1 - Mertens, Josef A1 - Velden, Alexander van der A1 - Kelm, Roland T1 - Flugzeug mit Flügeln, deren maximaler Auftrieb durch steuerbare Flügelkomponenten veränderbar ist : Offenlegungsschrift DE102004045732 ; Offenlegungstag: 30.03.2006 = Aircraft with wings whose maximum lift can be altered by controllable wing components Y1 - 2006 N1 - Zugleich EP1791755A1. - Volltext über Datenbank: http://publikationen.dpma.de/ PB - Deutsches Patent- und Markenamt CY - München ER - TY - BOOK A1 - Mertens, Josef A1 - Velden, Alexander van der A1 - Kelm, Roland A1 - Kokan, David T1 - Application of MDO to large subsonic transport aircraft Y1 - 2000 N1 - Aerospace Sciences Meeting and Exhibit <38, 2000, Reno, NV> ; (AIAA Paper ; 00-0844) PB - American Institute of Aeronautics and Astronautics CY - Reston, Va. ER - TY - JOUR A1 - Meyer, Max-Arno A1 - Granrath, Christian A1 - Feyerl, Günter A1 - Richenhagen, Johannes A1 - Kaths, Jakob A1 - Andert, Jakob T1 - Closed-loop platoon simulation with cooperative intelligent transportation systems based on vehicle-to-X communication JF - Simulation Modelling Practice and Theory Y1 - 2021 U6 - https://doi.org/10.1016/j.simpat.2020.102173 SN - 1569-190X VL - 106 IS - Art. 102173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mikucki, Jill Ann A1 - Schuler, C. G. A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Tuttle, M. J. A1 - Chua, Michelle A1 - Davis, R. A1 - Purcell, Alicia A1 - Ghosh, D. A1 - Francke, G. A1 - Feldmann, M. A1 - Espe, C. A1 - Heinen, Dirk A1 - Dachwald, Bernd A1 - Clemens, Joachim A1 - Lyons, W. B. A1 - Tulaczyk, S. T1 - Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem JF - Astrobiology N2 - Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts. Y1 - 2023 U6 - https://doi.org/10.1089/ast.2021.0102 SN - 1557-8070 (online) SN - 153-1074 (print) VL - 23 IS - 11 SP - 1165 EP - 1178 PB - Liebert CY - New York, NY ER - TY - CHAP A1 - Mulsow, Niklas A. A1 - Hülsen, Benjamin A1 - Gützlaff, Joel A1 - Spies, Leon A1 - Bresser, Andreas A1 - Dabrowski, Adam A1 - Czupalla, Markus A1 - Kirchner, Frank T1 - Concept and design of an autonomous micro rover for long term lunar exploration T2 - Proceedings of the 74th International Astronautical Congress N2 - Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power. Y1 - 2023 N1 - 74. International Astronautical Congress (IAC-2023), October 2-6 2023, Baku, Azerbaijan PB - dfki CY - Saarbrücken ER - TY - JOUR A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - Assessment of structural mechanical effects related to torsional deformations of propellers JF - CEAS Aeronautical Journal N2 - Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension–twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension–twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller’s stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material. KW - Lifting propeller KW - Extension–twist coupling KW - Trapeze effect KW - Centrifugal twisting moment Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00737-7 SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Felix Möhren PB - Springer CY - Wien ER -