TY - JOUR A1 - Pohl, Martina A1 - Siegert, Petra A1 - Mesch, K. A1 - Bruhn, H. A1 - Grötzinger, Joachim T1 - Active site mutants of pyruvate decarboxylase from Zymomonas mobilis : a site-directed mutagenesis study of L112, I472, I476, E473 and N482 JF - European journal of biochemistry Y1 - 1998 SN - 1432-1033 (E-Journal); 1742-4658 (E-Journal); 0014-2956 (Print); 1742-464X (Print) VL - Vol. 257 IS - Iss. 3 SP - 538 EP - 546 ER - TY - JOUR A1 - Polen, T. A1 - Krämer, Marco A1 - Bongaerts, Johannes A1 - Wubbolts, Marcel A1 - Wendisch, V. F. T1 - The global gene expression response of Escherichia coli to L-phenylalanine JF - Journal of biotechnology Y1 - 2005 SN - 1873-4863 (E-Journal); 0168-1656 (Print) VL - Vol. 115 IS - Iss. 3 SP - 221 EP - 237 ER - TY - GEN A1 - Poth, S. A1 - Monzon, M. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Fermentation von Hydrolysaten aus Lignocellulose T2 - Chemie Ingenieur Technik N2 - Die ökonomische Abhängigkeit von fossilen Brennstoffen und der klimatische Wandel durch die Nutzung dieser haben zu einer intensiven Suche nach erneuerbaren Rohstoffen für die Produktion von Chemikalien und Treibstoffen geführt. Ein viel versprechender Rohstoff in diesem Zusammenhang sind Zucker, die mittels enzymatischer Hydrolyse aus Lignocellulose gewonnen werden können. Die Fermentation erfolgt mit Cellulose- bzw. Hemicellulose-Fraktionen, welche durch thermo-chemische Vorbehandlung von Holz gewonnen und anschließend enzymatisch hydrolysiert werden. Die in den Hydrolysaten enthaltenen Zuckermonomere dienen als Kohlenstoffquelle für die Produktion von Ethanol. Da sowohl Glucose als auch Xylose in den unterschiedlichen Fraktionen enthalten sind, wird zur Umsetzung dieser eine Co-Fermentation zweier Hefen durchgeführt. Im Rahmen der Optimierung dieser Fermentationen werden neben der Ergänzung der Hydrolysate durch notwendige Salze auch Verfahrenweisen wie Fed-Batch-Fermentationen untersucht. Ein weiterer interessanter Ansatz, welcher in diesem Rahmen geprüft wird, ist die enzymatische Hydrolyse der Lignocellulose-Fraktionen und die simultane Fermentation der dabei entstehenden Zucker in einem Schritt. Des Weiteren wurde die Eignung der Hydrolysate für die Biomasseproduktion anderer Mikroorganismen wie Escherichia coli getestet. Y1 - 2009 U6 - https://doi.org/10.1002/cite.200950243 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet‐Jahrestagung 2009 und 27. DECHEMA-Jahrestagung der Biotechnologen, 8.- 10. September 2009, Mannheim N1 - Das hier vorgestellte Vorhaben wird durch die Fachagentur für Nachwachsende Rohstoffe(FNR) gefördert: „Verbundvorhaben: Pilotprojekt Lignocellulose-Bioraffinerie, Teilvorhaben 1: Extraktverarbeitung, Enzymtechnologie, verfahrenstechnische Untersuchungen, Ökobilanzierung, Wirtschaftlichkeitsberechnungen“ (Förderkennzeichen: FNR 22027405). VL - 81 IS - 8 SP - 1220 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Poth, S. A1 - Monzon, M. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Lignocellulose-Bioraffinerie: Simultane Verzuckerung und Fermentation T2 - Chemie Ingenieur Technik N2 - Die am häufigsten genutzten Rohstoffe für die Produktion von Treibstoffen und Chemikalien sind fossilen Ursprungs. Da diese limitiert sind, werden im Hinblick auf die Nachhaltigkeit alternative, erneuerbare Rohstoffquellen intensiv untersucht. Vielversprechend in diesem Kontext sind die in Lignocellulose enthaltenen Zucker, die beispielsweise zur Produktion von Ethanol genutzt werden können. In der Regel sind für eine Lig-nocellulose-Bioraffinerie mehrere Prozessschritte notwendig: Vorbehandlung, Verzuckerung und Fermentation. Um diesen Prozess einfacher zu gestalten, ist es möglich, die Verzuckerung und die Fermentation in einem Schritt durchzuführen (SSF). Als Substrat wird hier Cellulose-Faserstoff verwendet, der durch das Organosolv-Verfahren aufgeschlossen wurde. Die Hydrolyse erfolgt mit kommerziell erhältlichen Enzymen und für die Fermentation zu Ethanol werden zwei Hefen verwendet. Beim SSF-Verfahren konnte, im Vergleich zur entkoppelten Verfahrensweise, trotz bestehender Unterschiede in den Temperatur-Optima von Enzymen und Hefen eine Steigerung in der Ethanol-Ausbeute von 0,15 auf 0,2 gg⁻¹ beobachtet werden. Um wirtschaftliche Ausbeuten und Konzentrationen des Produkts erzielen zu können, ist es notwendig den Prozess weiter zu optimieren. Im Einzelfall muss überprüft werden, ob diese Verfahrensweise auch für die Produktion anderer interessanter Stoffe (wie Itaconsäure, Bernsteinsäure) geeignet ist. KW - Lignocellulose-Bioraffinerie KW - Prozessintegration Y1 - 2010 U6 - https://doi.org/10.1002/cite.201050360 N1 - ProcessNet-Jahrestagung 2010 und 28. DECHEMA-Jahrestagung der Biotechnologen, 21. - 23. September 2010, Eurogress Aachen VL - 82 IS - 9 SP - 1568 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Poth, S. A1 - Monzon, M. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Enzymatische Hydrolyse von vorbehandelter Lignocellulose T2 - Chemie Ingenieur Technik N2 - Die ökonomische Abhängigkeit von fossilen Brennstoffen und der klimatische Wandel durch die Nutzung dieser haben zu einer intensiven Suche nach erneuerbaren Rohstoffen für die Produktion von Chemikalien und Treibstoffen geführt. Ein viel versprechender Rohstoff in diesem Zusammenhang sind Zucker, die mittels enzymatischer Hydrolyse aus Lignocellulose gewonnen und beispielsweise zu Ethanol umgesetzt werden können. Dabei ist es notwendig die Hydrolyse in Hinsicht auf das verwendete Substrat und die Verwendung der entstehenden Hydrolysate für die Fermentation von Alkohol zu optimieren. Als Substrat dienen Cellulose- und Hemicellulose-Fraktionen, die durch thermo-chemische Vorbehandlung von Holz gewonnen werden. Die Vorbehandlung erfolgt bei unserem Projektpartner am Johann Heinrich von Thünen Institut in Hamburg. Verschiedene kommerziell erhältliche Enzyme, thermostabile eingeschlossen, wurden auf ihre Fähigkeit hin untersucht, diese Fraktionen zu den entsprechenden Zuckern umsetzen zu können. Um die Konzentration an fermentierbaren Zuckern zu steigern werden verschiedene Optimierungen durchgeführt, z. B. die Erhöhung der Substrat- bzw. Enzymkonzentrationen. Ein weiterer interessanter Ansatz, welcher ebenfalls verfolgt wird, ist es die Hydrolyse und die Fermentation in einem Schritt durchzuführen. Y1 - 2009 U6 - https://doi.org/10.1002/cite.200950244 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet‐Jahrestagung 2009 und 27. DECHEMA-Jahrestagung der Biotechnologen, 8.- 10. September 2009, Mannheim N1 - Das hier vorgestellte Vorhaben wird durch die Fachagentur für Nachwachsende Rohstoffe (FNR) gefördert: „Verbundvorhaben: Pilotprojekt Lignocellulose-Bioraffinerie, Teilvorhaben 1: Extraktverarbeitung, Enzymtechnologie, verfahrenstechnische Untersuchungen, Ökobilanzierung, Wirtschaftlichkeitsberechnungen“ (Förderkennzeichen: FNR 22027405) VL - 81 IS - 8 SP - 1049 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poth, Sebastian A1 - Monzon, Magaly A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Lignocellulosic biorefinery: Process integration of hydrolysis and fermentation (SSF process) JF - Holzforschung N2 - The aim of the present work is the process integration and the optimization of the enzymatic hydrolysis of wood and the following fermentation of the products to ethanol. The substrate is a fiber fraction obtained by organosolv pre-treatment of beech wood. For the ethanol production, a co-fermentation by two different yeasts (Saccharomyces cerevisiae and Pachysolen tannophilus) was carried out to convert glucose as well as xylose. Two approaches has been followed: 1. A two step process, in which the hydrolysis of the fiber fraction and the fermentation to product are separated from each other. 2. A process, in which the hydrolysis and the fermentation are carried out in one single process step as simultaneous saccharification and fermentation (SSF). Following the first approach, a yield of about 0.15 g ethanol per gram substrate can be reached. Based on the SSF, one process step can be saved, and additionally, the gained yield can be raised up to 0.3 g ethanol per gram substrate. Y1 - 2011 N1 - 11th EWLP, Hamburg, Germany, August 16–19, 2010 VL - 65 IS - 5 SP - 633 EP - 637 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Poth, Sebastian A1 - Monzon, Magaly A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Lignocellulosic biorefinery : process integration of hydrolysis and fermentation T2 - Proceedings / 11th European Workshop on Lignocellulosics and Pulp : August 16 - 19, 2010, Hamburg, Germany Y1 - 2010 SP - 65 EP - 68 PB - vTi CY - Hamburg ER - TY - JOUR A1 - Prielmeier, Franz A1 - Hörstermann, D. A1 - Gyngell, M. L. A1 - Merboldt, K.-D. T1 - Localized Proton MRS of Acute and Chronic Gyperglycemia in Rat Brain in vivo / D. Hörstermann, F. Prielmeier , M. L. Gyngell, K.-D. Merboldt, W. Hänicke, J. Frahm JF - Book of Abstracts, SMRM, 11th Annual Meeting Berlin Y1 - 1992 N1 - Society of Magnetic Resonance in Medicine SP - 2740 ER - TY - JOUR A1 - Prielmeier, Franz A1 - Lang, E. W. T1 - Multinuclear Spin-Lattice Relaxation Time Studies of Supercooled Aqueous LiCl-Solutions / E .W. Lang, F. X. Prielmeier JF - Berichte der Bunsen-Gesellschaft für Physikalische Chemie. 92 (1988) Y1 - 1988 SN - 0005-9021 SP - 717 ER - TY - JOUR A1 - Prielmeier, Franz A1 - Lang, E. W. A1 - Lüdemann, H.-D. T1 - Pressure dependence of the self-diffusion in liquid trifluoromethane / F. X. Prielmeier; E. W. Lang; H.-D. Lüdemann JF - Molecular Physics. 52 (1984), H. 5 Y1 - 1984 SN - 0026-8976 SP - 1105 EP - 1113 ER -