TY - JOUR A1 - Scholz, Christina A1 - Romagnoli, Daniele A1 - Dachwald, Bernd A1 - Theil, Stephan T1 - Performance analysis of an attitude control system for solar sails using sliding masses JF - Advances in Space Research Y1 - 2011 SN - 0273-1177 VL - 48 IS - 11 SP - 1822 EP - 1835 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - JOUR A1 - Schopen, Oliver A1 - Shah, Neel A1 - Esch, Thomas A1 - Shabani, Bahman T1 - Critical quantitative evaluation of integrated health management methods for fuel cell applications JF - International Journal of Hydrogen Energy N2 - Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system. KW - Fuel cell KW - Health management system KW - Online diagnostic KW - Fault detection KW - Non-model-based Evaluation Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2024.05.156 SN - 0360-3199 VL - 70 SP - 370 EP - 388 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT 2021 N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques), 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER - TY - JOUR A1 - Schulze, Sven A1 - Feyerl, Günter A1 - Pischinger, Stefan T1 - Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions JF - Energies N2 - To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks. KW - Energy management strategies KW - ECMS KW - CO2 emission reduction targets KW - Driving cycle recognition KW - Predictive battery discharge Y1 - 2023 U6 - https://doi.org/10.3390/en16135171 SN - 1996-1073 N1 - The article belongs to the Special Issue "Energy Management Strategies of Electrified Vehicles toward the Real-World Driving". VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - CHAP A1 - Schulze, Sven A1 - Mühleisen, M. A1 - Feyerl, Günter T1 - Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology T2 - 18. Internationales Stuttgarter Symposium. Proceedings Y1 - 2018 U6 - https://doi.org/10.1007/978-3-658-21194-3 SP - 75 EP - 89 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Schückhaus, Ulrich T1 - Die SkyCab-Erfinder im WFMG-Interview JF - Business in MG Y1 - 2020 N1 - Interview von WFMG – Wirtschaftsförderung Mönchengladbach GmbH, vertreten durch Dr. Ulrich Schückhaus IS - 1 SP - 6 EP - 7 ER - TY - JOUR A1 - Schüller, K. A1 - Kowalski, Julia A1 - Raback, P. T1 - Curvilinear melting – A preliminary experimental and numerical study JF - International Journal of Heat and Mass Transfer N2 - When exploring glacier ice it is often necessary to take samples or implement sensors at a certain depth underneath the glacier surface. One way of doing this is by using heated melting probes. In their common form these devices experience a straight one-dimensional downwards motion and can be modeled by standard close-contact melting theory. A recently developed melting probe however, the IceMole, achieves maneuverability by simultaneously applying a surface temperature gradient to induce a change in melting direction and controlling the effective contact-force by means of an ice screw to stabilize its change in attitude. A modeling framework for forced curvilinear melting does not exist so far and will be the content of this paper. At first, we will extend the existing theory for quasi-stationary close-contact melting to curved trajectories. We do this by introducing a rotational mode. This additional unknown in the system implies yet the need for another model closure. Within this new framework we will focus on the effect of a variable contact-force as well as different surface temperature profiles. In order to solve for melting velocity and curvature of the melting path we present both an inverse solution strategy for the analytical model, and a more general finite element framework implemented into the open source software package ELMER. Model results are discussed and compared to experimental data conducted in laboratory tests. Y1 - 2016 U6 - https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.046 SN - 0017-9310 IS - 92 SP - 884 EP - 892 PB - Elsevier CY - Amsterdam ER -