TY - JOUR A1 - Seifarth, Volker A1 - Schehl, D. A1 - Linder, Peter A1 - Gossmann, Matthias A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Porst, Dariusz A1 - Preiß, C. A1 - Kayser, Peter A1 - Pack, O. A1 - Temiz Artmann, Aysegül T1 - Ureplace: development of a bioreactor for in vitro culturing of cell seeded tubular vessels on collagen scaffolds N2 - The demand of replacements for inoperable organs exceeds the amount of available organ transplants. Therefore, tissue engineering developed as a multidisciplinary field of research for autologous in-vitro organs. Such three dimensional tissue constructs request the application of a bioreactor. The UREPLACE bioreactor is used to grow cells on tubular collagen scaffolds OPTIMAIX Sponge 1 with a maximal length of 7 cm, in order to culture in vitro an adequate ureter replacement. With a rotating unit, (urothelial) cells can be placed homogeneously on the inner scaffold surface. Furthermore, a stimulation is combined with this bioreactor resulting in an orientation of muscle cells. These culturing methods request a precise control of several parameters and actuators. A combination of a LabBox and the suitable software LabVision is used to set and conduct parameters like rotation angles, velocities, pressures and other important cell culture values. The bioreactor was tested waterproof successfully. Furthermore, the temperature controlling was adjusted to 37 °C and the CO2 - concentration regulated to 5 %. Additionally, the pH step responses of several substances showed a perfect functioning of the designed flow chamber. All used software was tested and remained stable for several days. KW - Tissue Engineering KW - Bioreaktor KW - Organkultur KW - Harnleiter Y1 - 2011 ER - TY - JOUR A1 - Scholz, Christina A1 - Romagnoli, Daniele A1 - Dachwald, Bernd A1 - Theil, Stephan T1 - Performance analysis of an attitude control system for solar sails using sliding masses JF - Advances in Space Research Y1 - 2011 SN - 0273-1177 VL - 48 IS - 11 SP - 1822 EP - 1835 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Preiß, C. A1 - Linder, Peter A1 - Wendt, K. A1 - Krystek, M. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Bassam, Rasha A1 - Artmann, Gerhard T1 - Engineering technology for plant physiology and plant stress research N2 - Plant physiology and plant stress: Plant physiology will be much more important for human mankind because of yield and cultivation limits of crops determined by their resistance to stress. To assess and counteract various stress factors it is necessary to conduct plant research to gain information and results on plant physiology. KW - Pflanzenphysiologie KW - Pflanzenstress KW - Pflanzenscanner KW - plant stress KW - plant scanner Y1 - 2011 ER - TY - JOUR A1 - Nguyen-Xuan, H. A1 - Rabczuk, T. A1 - Nguyen-Thoi, T. A1 - Tran, Thanh Ngoc A1 - Nguyen-Thanh, N. T1 - Computation of limit and shakedown loads using a node-based smoothed finite element method JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. Y1 - 2011 U6 - http://dx.doi.org/10.1002/nme.3317 SN - 1097-0207 VL - 90 IS - 3 SP - 287 EP - 310 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Mikielewicz, Marek A1 - Kotliar, Konstantin A1 - Barraquer, Rafael I. A1 - Michael, Ralph T1 - Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus JF - British Journal of Ophthalmology (eBJO) Y1 - 2011 SN - 1468-2079 VL - 95 IS - 6 SP - 793 EP - 798 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Lanzl, Ines M. A1 - Seidova, Seid-Fatima A1 - Maier, Mathias A1 - Schmidt-Trucksäss, Arno A1 - Halle, Martin A1 - Kotliar, Konstantin T1 - Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection JF - Acta Ophthalmologica Y1 - 2011 SN - 1755-3768 VL - 89 IS - 5 SP - 472 EP - 479 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, T. A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Karakulah, G. A1 - Artmann, Gerhard A1 - Sakizli, M. A1 - Temiz Artmann, Aysegül T1 - Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation JF - Cellular and molecular bioengineering. 4 (2011), H. 1 Y1 - 2011 SN - 1865-5025 SP - 46 EP - 55 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Lanzl, Ines M. A1 - Schmidt-Trucksäss, A. A1 - Sitnikova, Diana A1 - Ali, Mohammad A1 - Blume, Katharina A1 - Halle, Martin A1 - Hansser, Henner T1 - Dynamic retinal vessel response to flicker in obesity: A methodological approach JF - Microvascular Research Y1 - 2011 SN - 0026-2862 VL - 81 IS - 1 SP - 123 EP - 128 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Lanzl, Ines M. T1 - Can vascular function be assessed by the interpretation of retinal vascular diameter changes? JF - Investigative Ophthalmology & Visual Science, IOVS. 52 (2011), H. 1 Y1 - 2011 SN - 0146-0404 SP - 635 EP - 636 PB - ARVO CY - Rockville, Md. ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Baumann, Marcus A1 - Vilser, Walthard A1 - Lanzl, Ines M. T1 - Pulse wave velocity in retinal arteries of healthy volunteers JF - British Journal of Ophthalmology (eBJO) Y1 - 2011 SN - 1468-2079 VL - 95 IS - 11 SP - 675 EP - 679 PB - BMJ Publ. Group CY - London ER -