TY - JOUR A1 - Trilla, Joan A1 - Grossen, Jürgen A1 - Robinson, Alexander A1 - Funke, Harald A1 - Bosschaerts, Walter A1 - Hendrick, Patrick T1 - Development of a hydrogen combustion chamber for an ultra micro gas turbine JF - PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9-12, 2008 Y1 - 2008 SP - 101 EP - 104 ER - TY - JOUR A1 - Tekin, Nurettin A1 - Ashikaga, Mitsugu A1 - Horikawa, Atsushi A1 - Funke, Harald T1 - Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems JF - Gas for energy N2 - For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized “diffusion-type” flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames. Y1 - 2018 IS - 2 PB - Vulkan-Verlag CY - Essen ER - TY - JOUR A1 - Robinson, A. E. A1 - Rönna, Uwe A1 - Funke, Harald T1 - Testing of a 10 kW diffusive micro-mix combustor for hydrogen-fuelled micro-scale gas turbines JF - International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications <7, 2007, Freiburg, Breisgau> ; PowerMEMS ; 7 Y1 - 2007 SP - 225 EP - 228 ER - TY - JOUR A1 - Robinson, A. E. A1 - Funke, Harald A1 - Wagemakers, R. A1 - Grossen, J. A1 - Bosschaerts, W. A1 - Hendrick, P. T1 - Numerical and Experimental Investigation of a Micromix Combustor for a Hydrogen Fuelled μ-Scale Gas Turbine JF - Proceedings of the ASME Turbo Expo 2009 : : presented at the 2009 ASME Turbo Expo, June 8 - 12, 2009, Orlando, Florida, USA / sponsored by the International Gas Turbine Institute Y1 - 2009 SN - 9780791848869 N1 - GT2009-60061 SP - 253 EP - 262 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Robinson, A. E. A1 - Funke, Harald A1 - Hendrick, P. A1 - Recker, E. A1 - Peirs, J. T1 - Development of a hydrogen fuelled 1 kW ultra micro gas turbine with special respect to designing, testing and mapping of the µ-scale combustor JF - IEEE International Conference on Sustainable Energy Technologies, 2008 : ICSET 2008 ; Singapore, 24 - 27 Nov. 2008. Y1 - 2008 SN - 978-1-4244-1887-9 SP - 656 EP - 660 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Robinson, A. E. A1 - Funke, Harald A1 - Hendrick, P. T1 - Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fueled µ-Scale Gas Turbine JF - Journal of engineering for gas turbines and power Y1 - 2011 SN - 1528-8919 VL - 133 IS - 8 PB - ASME CY - New York ER - TY - JOUR A1 - Recker, Elmar A1 - Bosschaerts, Walter A1 - Wagemakers, Rolf A1 - Hendrick, Patrick A1 - Funke, Harald A1 - Börner, Sebastian T1 - Experimental study of a round jet in cross-flow at low momentum ratio JF - 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 05-08 July, 2010 - 1 Y1 - 2010 SP - 1 EP - 13 ER - TY - JOUR A1 - Haj Ayed, A. A1 - Kusterer, K. A1 - Funke, Harald A1 - Keinz, Jan A1 - Striegan, Constantin A1 - Bohn, D. T1 - Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine JF - Propulsion and power research Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.jppr.2015.07.005 SN - 2212-540X VL - Vol. 4 IS - Iss. 3 SP - 123 EP - 131 ER - TY - JOUR A1 - Haj Ayed, A. A1 - Kusterer, K. A1 - Funke, Harald A1 - Keinz, Jan A1 - Striegan, Constantin A1 - Bohn, D. T1 - Improvement study for the dry-low-NOx hydrogen micromix combustion technology JF - Propulsion and power research Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.jppr.2015.07.003 SN - 2212-540X VL - Vol. 4 IS - Iss. 3 SP - 132 EP - 140 ER - TY - JOUR A1 - Funke, Harald A1 - Rönna, Uwe A1 - Robinson, A. E. T1 - Development and testing of a 10 kW diffusive micromix combustor for hydrogen-fuelled μ-scale gas turbines JF - Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air ; GT2008 ; June 9-13, 2008, Berlin, Germany Y1 - 2008 N1 - GT2008-50418 SP - 1 EP - 8 PB - ASME CY - New York, NY ER -