TY - JOUR A1 - Christen, Marc A1 - Bartelt, Perry A1 - Kowalski, Julia T1 - Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results JF - Annals of Glaciology N2 - Two- and three-dimensional avalanche dynamics models are being increasingly used in hazard-mitigation studies. These models can provide improved and more accurate results for hazard mapping than the simple one-dimensional models presently used in practice. However, two- and three-dimensional models generate an extensive amount of output data, making the interpretation of simulation results more difficult. To perform a simulation in three-dimensional terrain, numerical models require a digital elevation model, specification of avalanche release areas (spatial extent and volume), selection of solution methods, finding an adequate calculation resolution and, finally, the choice of friction parameters. In this paper, the importance and difficulty of correctly setting up and analysing the results of a numerical avalanche dynamics simulation is discussed. We apply the two-dimensional simulation program RAMMS to the 1968 extreme avalanche event In den Arelen. We show the effect of model input variations on simulation results and the dangers and complexities in their interpretation. KW - avalanche Y1 - 2010 SN - 1727-5644 U6 - https://doi.org/10.3189/172756410791386553 VL - 51 IS - 54 SP - 161 EP - 168 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Christ, D. A1 - Hollendung, A. A1 - Larue, H. A1 - Parl, C. A1 - Streun, M. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. T1 - Homogenization of the MultiChannel PM gain by inserting light attenuating masks JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - MultiChannel Photomultipliers (PM), like the R7600-00-M64 or R5900-00-M64 from Hamamatsu, are often chosen as photodetectors in high-resolution positron emission tomography (PET). A major problem of this PM is the nonuniform channel gain. In order to solve this problem, light attenuating masks were created. The aim of the masks is a homogenization of the output of all 64 channels using different hole sizes at the channel positions. The hole area, which is individually defined for the different channels, is inversely proportional to the channel gain. The measurements by inserting light attenuating masks improved a homogenization to a ratio of 1:1.2. Y1 - 2004 SN - 1082-3654 SP - 2382 EP - 2385 ER - TY - JOUR A1 - Choi, Chang-Hoon A1 - Felder, Tim A1 - Felder, Jörg A1 - Tellmann, Lutz A1 - Hong, Suk-Min A1 - Wegener, Hans-Peter A1 - Shah, N Jon A1 - Ziemons, Karl T1 - Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate JF - Physics in Medicine & Biology N2 - Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future. Y1 - 2020 U6 - https://doi.org/10.1088/1361-6560/ab87f8 SN - 0031-9155 VL - 65 IS - 11 PB - IOP CY - Bristol ER - TY - JOUR A1 - Chloé, Radermacher A1 - Malyaran, Hanna A1 - Craveiro, Rogerio Bastos A1 - Peglow, Sarah A1 - Behbahani, Mehdi A1 - Pufe, Thomas A1 - Wolf, Michael A1 - Neuss, Sabine T1 - Mechanical loading on cementoblasts: a mini review JF - Osteologie N2 - Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments. KW - Cementoblast KW - Compression KW - Tension KW - Mechanotransduction KW - Forces Y1 - 2022 U6 - https://doi.org/10.1055/a-1826-0777 SN - 1019-1291 VL - 31 IS - 2 SP - 111 EP - 118 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Chen, Tao A1 - Clauser, Christoph A1 - Marquart, Gabriele A1 - Willbrand, Karen A1 - Mottaghy, Darius T1 - A new upscaling method for fractured porous media JF - Advances in Water Resources Y1 - 2015 U6 - https://doi.org/10.1016/j.advwatres.2015.03.009 SN - 0309-1708 N1 - Corrigendum 2019: https://doi.org/10.1016/j.advwatres.2019.01.004 VL - 80 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chen, Chao A1 - Jost, Peter A1 - Volker, Hanno A1 - Kaminski, Marvin A1 - Wirtssohn, Matti R. A1 - Engelmann, Ulrich M. A1 - Krüger, K. A1 - Schlich, Franziska F. A1 - Schlockermann, Carl A1 - Lobo, Ricardo P.S.M. A1 - Wuttig, Matthias T1 - Dielectric properties of amorphous phase-change materials JF - Physical Review B Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.95.094111 SN - 2469-9950 VL - 95 IS - 9 SP - Article number 094111 ER - TY - JOUR A1 - Chen, Bixia A1 - Schoemberg, Tobias A1 - Kraff, Oliver A1 - Dammann, Philipp A1 - Bitz, Andreas A1 - Schlamann, Marc A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Sure, Ulrich A1 - Wrede, Karsten H. T1 - Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI. Y1 - 2016 U6 - https://doi.org/10.1007/s10334-016-0548-1 SN - 1352-8661 VL - 29 IS - 3 SP - 389 EP - 398 PB - Springer CY - Berlin ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Paulsen, Svea A1 - Ott, Fabian A1 - Grömping, Markus T1 - Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant JF - Water and Environment Journal N2 - The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15–30°C), pH value (6.0–8.0) and chemical oxygen demand (COD)/N ratio (≤1.5–6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally. KW - Anammox KW - Mainstream KW - Nitrogen removal KW - Partial nitritation KW - Wastewater Y1 - 2023 U6 - https://doi.org/10.1111/wej.12898 SN - 1747-6593 N1 - Corresponding author: Dheeraja Cheenakula VL - 38 IS - 1 SP - 59 EP - 70 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - https://doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Griebel, Kai A1 - Montag, David A1 - Grömping, Markus ED - Huang, Xiaowu T1 - Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives JF - Frontiers in Microbiology N2 - Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8–20°C), pH (6–9) and COD:N ratio (1–6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case. KW - anammox KW - energy efficiency KW - mainstream deammonification KW - nitrogen elimination KW - wastewater Y1 - 2023 U6 - https://doi.org/10.3389/fmicb.2023.1155235 SN - 1664-302X VL - 14 IS - 11155235 SP - 1 EP - 15 PB - Frontiers ER -