TY - BOOK A1 - Hüning, Felix T1 - The fundamentals of electrical engineering for mechatronics Y1 - 2014 SN - 978-3-11-034991-7 (Druckausg.) SN - 978-3-11-030840-2 (E-Book) PB - de Gruyter CY - Berlin ER - TY - CHAP A1 - Hüning, Felix T1 - Power semiconductors : key components for HEV/EV T2 - FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies Y1 - 2014 N1 - Datenformat: PDF PB - KIVI CY - [s.l.] ER - TY - CHAP A1 - Hüning, Felix T1 - Power Semiconductors for the automotive 48V board net T2 - PCIM Europe 2016 Conference Proceedings Y1 - 2016 SN - 978-3-8007-4186-1 SP - 1963 EP - 1969 PB - VDE Verl. CY - Berlin ER - TY - BOOK A1 - Hüning, Felix T1 - Embedded Design For IoT With Renesas Synergy Y1 - 2018 N1 - gedruckt in der Bereichsbibliothek Eupener Str. vorhanden; Document No. R01PF0164ED0100 PB - Renesas Electronics CY - Düsseldorf ER - TY - CHAP A1 - Hüning, Felix T1 - Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students T2 - Blended Learning in Engineering Education: challenging, enlightening – and lasting? N2 - The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher’s observations of the student’s learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching. Y1 - 2021 SN - 978-2-87352-023-6 N1 - SEFI 49th Annual Conference Technische Universität Berlin (online), 13 – 16 September 2021 SP - 1405 EP - 1409 ER - TY - JOUR A1 - Hulsebosch, R. J. A1 - Günther, C. A1 - Horn, C. A1 - Holtmanns, S. A1 - Howker, K. A1 - Paterson, K. A1 - Claessens, J. A1 - Schuba, Marko ED - Mitchell, Chris J. T1 - Pioneering Advanced Mobile Privacy and Security JF - Security for mobility Y1 - 2004 SN - 9781849190886 U6 - http://dx.doi.org/10.1049/PBTE051E_ch N1 - IEE telecommunications series ; 51 SP - 383 EP - 432 PB - Institution of Electrical Engineers CY - London ER - TY - JOUR A1 - Holtrup, S. A1 - Sadeghfam, Arash A1 - Heuermann, Holger A1 - Awakowicz, P. T1 - Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters JF - IEEE transactions on microwave theories and techniques N2 - High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation. Y1 - 2014 U6 - http://dx.doi.org/10.1109/TMTT.2014.2342652 SN - 0018-9480 VL - 62 IS - 10 SP - 2471 EP - 2480 PB - IEEE CY - New York ER - TY - CHAP A1 - Hofmann, Till A1 - Mataré, Victor A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Constraint-based online transformation of abstract plans into executable robot actions T2 - Proceedings of the 2018 AAAI Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy Y1 - 2018 SP - 549 EP - 553 ER - TY - CHAP A1 - Hofmann, Till A1 - Mataré, Victor A1 - Neumann, Tobias A1 - Schönitz, Sebastian A1 - Henke, Christoph A1 - Limpert, Nicolas A1 - Niemueller, Tim A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - Enhancing Software and Hardware Reliability for a Successful Participation in the RoboCup Logistics League 2017 Y1 - 2018 SN - 978-3-030-00308-1 U6 - http://dx.doi.org/10.1007/978-3-030-00308-1_40 N1 - Lecture Notes in Computer Science, vol 11175 SP - 486 EP - 497 PB - Springer CY - Cham ER - TY - CHAP A1 - Hofmann, Till A1 - Limpert, Nicolas A1 - Mataré, Viktor A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning T2 - RoboCup 2019: Robot World Cup XXIII. RoboCup Y1 - 2019 SN - 978-3-030-35699-6 U6 - http://dx.doi.org/10.1007/978-3-030-35699-6_41 N1 - Lecture Notes in Computer Science, vol 11531 SP - 504 EP - 516 PB - Springer CY - Cham ER -