TY - CHAP A1 - Bung, Daniel Bernhard T1 - Sensitivity of phase detection techniques in aerated chute flows to hydraulic design parameters T2 - 2nd European IAHR congress : 27. - 29. June 2012, München Y1 - 2012 SN - 978-3-943683-03-5 SP - Artikelkennnummer: B15 PB - Lehrstuhl u. Versuchsanst. für Wasserbau u. Wasserwirtschaft d. TU München CY - München ER - TY - JOUR A1 - Bung, Daniel Bernhard T1 - Non-intrusive detection of air–water surface roughness in self-aerated chute flows JF - Journal of hydraulic research Y1 - 2013 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 51 IS - Iss. 3 SP - 322 EP - 329 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bung, Daniel Bernhard T1 - Extreme flooding in Western Germany: some thoughts on hazards, return periods and risk JF - Hydrolink N2 - The low-pressure system Bernd involved extreme rainfalls in the Western part of Germany in July 2021, resulting in major floods, severe damages and a tremendous number of casualties. Such extreme events are rare and full flood protection can never be ensured with reasonable financial means. But still, this event must be starting point to reconsider current design concepts. This article aims at sharing some thoughts on potential hazards, the selection of return periods and remaining risk with the focus on Germany. Y1 - 2021 IS - 4 SP - 108 EP - 113 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - JOUR A1 - Bung, Daniel Bernhard T1 - Developing flow in skimming flow regime on embankment stepped spillways JF - Journal of hydraulic research Y1 - 2011 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 49 IS - Iss. 5 SP - 639 EP - 648 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - A comparative study of self-aerated stepped spillway and smooth invert chute flow: the effect of step-induced macro roughness T2 - 5th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : CG JOINT 2010 Y1 - 2010 SN - 978-7-5618-3671-2 SP - 451 EP - 456 PB - Univ. Press CY - Tianjin ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - Non-intrusive measuring of air-water flow properties in self-aerated stepped spillway flow T2 - Balance and uncertainty - water in a changing world : proceedings of the 34th IAHR world congress ; 33rd Hydrology and Water Resources Symposium ; 10th Conference on Hydraulics in Water Engineering ; 26 June - 1 July 2011, Brisbane, Australia Y1 - 2011 SN - 978-0-85825-868-6 SP - 2380 EP - 2387 ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - Air-water surface roughness in self-aerated stepped spillway flows T2 - 35th IAHR world congress : 8.-13.9.2013, Chengdu, China Y1 - 2013 SP - Artikelkennnummer: A11045 PB - Tsinghua Univ. Press CY - Beijing ER - TY - CHAP A1 - Bung, Daniel Bernhard ED - Rowinski, Pawel T1 - Laboratory models of free-surface flows T2 - Rivers - physical, fluvial and environmental processes N2 - Hydraulic modeling is the classical approach to investigate and describe complex fluid motion. Many empirical formulas in the literature used for the hydraulic design of river training measures and structures have been developed using experimental data from the laboratory. Although computer capacities have increased to a high level which allows to run complex numerical simulations on standard workstation nowadays, non-standard design of structures may still raise the need to perform physical model investigations. These investigations deliver insight into details of flow patterns and the effect of varying boundary conditions. Data from hydraulic model tests may be used for calibration of numerical models as well. As the field of hydraulic modeling is very complex, this chapter intends to give a short overview on capacities and limits of hydraulic modeling in regard to river flows and hydraulic structures only. The reader shall get a first idea of modeling principles and basic considerations. More detailed information can be found in the references. KW - Physical modeling KW - Similitude KW - Open channels KW - Hydraulic structures Y1 - 2015 SN - 978-3-319-17718-2 ; 978-3-319-17719-9 U6 - https://doi.org/10.1007/978-3-319-17719-9_9 SP - 213 EP - 228 PB - Springer CY - Cham ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - Observations on non-aerated flow and air entrainment on moderately sloped stepped spillways T2 - 7th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : 8. - 12. Sept. 2014, Hannover Y1 - 2014 N1 - Kennwortgeschützter Zugang. Passwort bei Prof. Bung, Fachbereich Bauingenieurwesen SP - 1 EP - 8 ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER -