TY - JOUR A1 - Müller, Tim M. A1 - Leise, Philipp A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Optimization and validation of pumping system design and operation for water supply in high-rise buildings JF - Optimization and Engineering N2 - The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer’s point of view, keeping in mind the economically important trade-off between investment and operation costs. KW - Technical Operations Research KW - MINLP KW - MILP KW - Experimental validation KW - Pumping systems Y1 - 2020 U6 - https://doi.org/10.1007/s11081-020-09553-4 SN - 1573-2924 VL - 2021 IS - 22 SP - 643 EP - 686 PB - Springer ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - https://doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Ahola, Marja A1 - Schabel, Samuel A1 - Pelz, Peter F. T1 - Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation N2 - Around 60% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield. KW - Mixed-integer nonlinear problem KW - MINLP KW - Process engineering KW - Paper recycling KW - Multi-criteria optimization Y1 - 2018 SN - 978-3-030-18499-5 U6 - https://doi.org/10.1007/978-3-030-18500-8_44 SP - 355 EP - 361 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Ahola, Marja A1 - Schabel, Samuel A1 - Pelz, Peter F. ED - Rodrigues, H. C. T1 - Multi-Criteria optimization of pressure screen systems in paper recycling – balancing quality, yield, energy consumption and system complexity T2 - EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization N2 - The paper industry is the industry with the third highest energy consumption in the European Union. Using recycled paper instead of fresh fibers for papermaking is less energy consuming and saves resources. However, adhesive contaminants in recycled paper are particularly problematic since they reduce the quality of the resulting paper-product. To remove as many contaminants and at the same time obtain as many valuable fibres as possible, fine screening systems, consisting of multiple interconnected pressure screens, are used. Choosing the best configuration is a non-trivial task: The screens can be interconnected in several ways, and suitable screen designs as well as operational parameters have to be selected. Additionally, one has to face conflicting objectives. In this paper, we present an approach for the multi-criteria optimization of pressure screen systems based on Mixed-Integer Nonlinear Programming. We specifically focus on a clear representation of the trade-off between different objectives. Y1 - 2019 SN - 978-3-319-97773-7 U6 - https://doi.org/10.1007/978-3-319-97773-7_105 N1 - EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. 17-19 September 2018. Lisboa, Portugal PB - Springer International Publishing CY - Basel ER - TY - JOUR A1 - Müller, Martin A1 - Hirschfeld, Julian A1 - Lambertz, Rita A1 - Schulze Lohoff, Andreas A1 - Lustfeld, Hans A1 - Pfeifer, Heinz A1 - Reißel, Martin T1 - Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks JF - Journal of power sources N2 - In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents. Y1 - 2014 U6 - https://doi.org/10.1016/j.jpowsour.2014.08.045 SN - 1873-2755 (E-Journal); 0378-7753 (Print) VL - 272 SP - 225 EP - 232 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Müller, Karsten A1 - Hüben, Susanne T1 - From rehabilitation strategy up to formation of lots : implementation of a computer-aided decision support system T2 - 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31st August to 5th September 2008 Y1 - 2008 ER - TY - CHAP A1 - Müller, Karsten A1 - Fischer, B. T1 - Objective condition assessment of sewer systems T2 - Strategic asset management of water supply and wastewater infrastructures : invited papers from the 2nd IWA Leading Edge Conference on Strategic Asset Management (LESAM), Lisbon, October [17 - 19] 2007 / ed. by Helene Alegre and Maria do Céu Almeida Y1 - 2009 SN - 9781843391869 SP - 521 EP - 534 PB - IWA Publ. CY - London ER - TY - JOUR A1 - Müller, Janina A1 - Beckers, Mario A1 - Mußmann, Nina A1 - Bongaerts, Johannes A1 - Büchs, Jochen T1 - Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium JF - Microbial Cell Factories N2 - Background Culture media containing complex compounds like yeast extract or peptone show numerous disadvantages. The chemical composition of the complex compounds is prone to significant variations from batch to batch and quality control is difficult. Therefore, the use of chemically defined media receives more and more attention in commercial fermentations. This concept results in better reproducibility, it simplifies downstream processing of secreted products and enable rapid scale-up. Culturing bacteria with unknown auxotrophies in chemically defined media is challenging and often not possible without an extensive trial-and-error approach. In this study, a respiration activity monitoring system for shake flasks and its recent version for microtiter plates were used to clarify unknown auxotrophic deficiencies in the model organism Bacillus pumilus DSM 18097. Results Bacillus pumilus DSM 18097 was unable to grow in a mineral medium without the addition of complex compounds. Therefore, a rich chemically defined minimal medium was tested containing basically all vitamins, amino acids and nucleobases, which are essential ingredients of complex components. The strain was successfully cultivated in this medium. By monitoring of the respiration activity, nutrients were supplemented to and omitted from the rich chemically defined medium in a rational way, thus enabling a systematic and fast determination of the auxotrophic deficiencies. Experiments have shown that the investigated strain requires amino acids, especially cysteine or histidine and the vitamin biotin for growth. Conclusions The introduced method allows an efficient and rapid identification of unknown auxotrophic deficiencies and can be used to develop a simple chemically defined tailor-made medium. B. pumilus DSM 18097 was chosen as a model organism to demonstrate the method. However, the method is generally suitable for a wide range of microorganisms. By combining a systematic combinatorial approach based on monitoring the respiration activity with cultivation in microtiter plates, high throughput experiments with high information content can be conducted. This approach facilitates media development, strain characterization and cultivation of fastidious microorganisms in chemically defined minimal media while simultaneously reducing the experimental effort. Y1 - 2018 U6 - https://doi.org/10.1186/s12934-018-0956-1 SN - 1475-2859 VL - 17 IS - 1 SP - Article No. 106 PB - BioMed Central ER - TY - JOUR A1 - Mühl, Thomas A1 - Binnebösel, Marcel A1 - Klinge, Uwe A1 - Goedderz, Thomas T1 - New objective measurement to characterize the porosity of textile implants JF - Journal of Biomedical Materials Research Part B: Applied Biomaterials. 84B (2008), H. 1 Y1 - 2008 SN - 1552-4981 SP - 176 EP - 183 ER - TY - CHAP A1 - Möhring, S. A1 - Wulfhorst, H. A1 - Roth, J. A1 - Tippkötter, Nils T1 - Pretreatment strategies for lignocellulosic biomass T2 - New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany Y1 - 2016 SP - 131 PB - DECHEMA CY - Frankfurt am Main ER -