TY - JOUR A1 - Lopes, Pedro A1 - Leandro, Jorge A1 - Carvalho, Rita F. A1 - Bung, Daniel Bernhard T1 - Alternating skimming flow over a stepped spillway JF - Environmental Fluid Mechanics Y1 - 2017 U6 - https://doi.org/10.1007/s10652-016-9484-x SN - 1573-1510 VL - 17 IS - 2 SP - 303 EP - 322 PB - Springer CY - Berlin ER - TY - CHAP A1 - Lopes, Pedro A1 - Bung, Daniel Bernhard A1 - Leandro, Jorge A1 - Carvalho, Rita F. T1 - The effect of cross-waves in physical stepped spillway models T2 - E-proceedings of the 36th IAHR World Congress ; 28 June - 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 9 ER - TY - JOUR A1 - Leandro, J. A1 - Bung, Daniel Bernhard A1 - Carvalho, R. T1 - Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods JF - Experiments in fluids Y1 - 2014 U6 - https://doi.org/10.1007/s00348-014-1732-6 SN - 0723-4864 (Print) ; 1432-1114 (Online) IS - 55 SP - Art. 1732 PB - Springer Nature CY - Heidelberg ER - TY - RPRT A1 - Lawson, R.M. A1 - Baddoo, N.R. A1 - Vanier, G. A1 - Döring, Bernd A1 - Kuhnhenne, M. A1 - Nieminen, J. A1 - Beguin, P. A1 - Herbin, S. A1 - Caroli, G. A1 - Adetunji, I. A1 - Kozlowski, A. T1 - Renovation of buildings using steel technologies (Robust) - EUR 25335 N2 - Robust addresses the renovation and improvement of existing residential, industrial and commercial buildings using steel-based technologies, focusing on techniques such as over-cladding, over-roofing and roof-top extensions. Steel-intensive renovation techniques currently on the market were reviewed. Performance criteria were developed for over-cladding systems meeting current regulatory standards, with guidelines on how to achieve appropriate levels of air-tightness. KW - iron and steel industry KW - steel KW - materials technology KW - building materials KW - metal structure KW - building safety KW - testing KW - industrial research Y1 - 2013 SN - 978-92-79-24950-1 U6 - https://doi.org/10.2777/97860 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - JOUR A1 - Kuhnhenne, Markus A1 - Reger, Vitali A1 - Pyschny, Dominik A1 - Döring, Bernd T1 - Influence of airtightness of steel sandwich panel joints on heat losses JF - E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020) N2 - Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency. Y1 - 2020 U6 - https://doi.org/10.1051/e3sconf/202017205008 VL - 172 IS - Art. 05008 PB - EDP Sciences CY - Les Ulis ER - TY - CHAP A1 - Kuhnhenne, Markus A1 - Döring, Bernd A1 - Pyschny, Dominik A1 - Feldmann, Markus T1 - Energy efficient sandwich construction T2 - Proceedings of the VI International Congress on Architectural Envelopes : 20.6. - 22.6.2012, San Sebastian, Spain Y1 - 2012 SP - 277 EP - 285 PB - ICAE ER - TY - JOUR A1 - Kramer, Matthias A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel Bernhard T1 - Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique JF - Experiments in Fluids Y1 - 2019 U6 - https://doi.org/10.1007/s00348-018-2650-9 SN - 1432-1114 VL - 60 EP - Article number 2 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kolymbas, Dimitrios A1 - Fellin, W. A1 - Kirsch, Ansgar T1 - Squeezing due to stress relaxation in foliated rock JF - International journal for numerical and analytical methods in geomechanics Y1 - 2006 U6 - https://doi.org/10.1002/nag.530 SN - 1096-9853 (E-Journal); 0363-9061 (Print) VL - Vol. 30 IS - Iss. 13 SP - 1357 EP - 1367 ER - TY - JOUR A1 - Kirstein, Simon A1 - Müller, Karsten A1 - Walecki-Mingers, Mark A1 - Deserno, Thomas M. T1 - Robust adaptive flow line detection in sewer pipes JF - Automation in construction N2 - As part of a novel approach to automatic sewer inspection, this paper presents a robust algorithm for automatic flow line detection. A large image repository is obtained from about 50,000 m sewers to represent the high variability of real world sewer systems. Automatic image processing combines Canny edge detection, Hough transform for straight lines and cost minimization using Dijkstra's shortest path algorithm. Assuming that flow lines are mostly smoothly connected horizontal structures, piecewise flow line delineation is reduced to a process of selecting adjacent line candidates. Costs are derived from the gap between adjacent candidates and their reliability. A single parameter α enables simple control of the algorithm. The detected flow line may precisely follow the segmented edges (α = 0.0) or minimize gaps at joints (α = 1.0). Both, manual and ground truth-based analysis indicate that α = 0.8 is optimal and independent of the sewer's material. The algorithm forms an essential step to further automation of sewer inspection. Y1 - 2012 U6 - https://doi.org/10.1016/j.autcon.2011.05.009 SN - 1872-7891 (E-Journal) ; 0926-5805 (Print) IS - 21 SP - 24 EP - 31 PB - Elsevier CY - Amsterdam ER -