TY - CHAP A1 - Bung, Daniel B. A1 - Valero, Daniel ED - Dewals, Benjamin T1 - Image processing techniques for velocity estimation in highly aerated flows: bubble image velocimetry vs. optical flow T2 - Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016) Y1 - 2016 SN - 978-1-138-02977-4 SN - 978-1-4987-8149-7 (eBook) U6 - http://dx.doi.org/10.1201/b21902-31 SP - 151 EP - 157 PB - CRC Press ER - TY - CHAP A1 - Broenner, Simon A1 - Höfken, Hans-Wilhelm A1 - Schuba, Marko T1 - Streamlining extraction and analysis of android RAM images T2 - Proceedings of the 2nd international conference on information systems security and privacy Y1 - 2016 SN - 978-989-758-167-0 U6 - http://dx.doi.org/10.5220/0005652802550264 SP - 255 EP - 264 ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Erni, Daniel T1 - Female pelvic floor dysfunction: progress weakening of the support system T2 - 1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen N2 - The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders. Y1 - 2016 U6 - http://dx.doi.org/10.17185/duepublico/40821 SP - 11 EP - 12 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Natal Jorge, Renato T1 - Significance of fibre geometry on passive-active response of pelvic muscles to evaluate pelvic dysfunction T2 - BioMedWomen: Proceedings of the international conference on clinical and bioengineering for women's health Y1 - 2016 SN - 978-1-138-02910-1 SP - 185 EP - 188 PB - CRC Press CY - Boca Raton ER - TY - CHAP A1 - Barnat, Miriam A1 - Bosse, Elke T1 - The challenge of creating meta-inferences: Combining data representing institutional and individual perspectives on first-year support in higher education T2 - 9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK Y1 - 2016 N1 - RC33 Conference 2016 SP - 1 EP - 20 ER -