TY - JOUR A1 - Dachwald, Bernd A1 - Mengali, Giovanni A1 - Quarta, Alessandrao A. A1 - Macdonald, Malcolm T1 - Parametric Model and Optimal Control of Solar Sails with Optical Degradation JF - Journal of guidance, control, and dynamics. 29 (2006), H. 5 Y1 - 2006 SN - 0162-3192 N1 - 2. ISSN: 0731-5090 SP - 1170 EP - 1178 ER - TY - JOUR A1 - Dachwald, Bernd A1 - McDonald, Malcolm A1 - McInnes, Colin R. A1 - Mengali, Giovanni T1 - Impact of Optical Degradation on Solar Sail Mission Performance JF - Journal of Spacecraft and Rockets. 44 (2007), H. 4 Y1 - 2007 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 740 EP - 749 ER - TY - JOUR A1 - Dachwald, Bernd A1 - MacDonald, Malcolm A1 - McInnes, Colin R. T1 - Heliocentric Solar Sail Orbit Transfers with Locally Optimal Control Laws / Malcolm Macdonald ; Colin McInnes ; Bernd Dachwald JF - Journal of Spacecraft and Rockets. 44 (2007), H. 1 Y1 - 2007 SN - 0022-4650 SP - 273 EP - 276 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Leipold, M. A1 - Fichtner, H. T1 - Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System / M. Leipold ; H. Fichtner ; B. Heber ... B. Dachwald ... JF - Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris] Y1 - 2003 SN - 92-9092-853-0 N1 - International Conference on Low Cost Planetary Missions <5, 2003, Noordwijk> ; International Academy of Astronautics ; European Space Research and Technology Centre SP - 367 EP - 375 PB - ESA CY - Noordwijk ER - TY - JOUR A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis JF - AIAA Guidance, Navigation, and Control Conference & Exhibit - AIAA Atmospheric Flight Mechanics Conference & Exhibit - AIAA Modeling and Simulation Technologies Conference & Exhibit - AIAA/AAS Astrodynamics Specialist Conference & Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 ) Y1 - 2006 SN - 1-56347-802-1 N1 - American Institute of Aeronautics and Astronautics ; American Astronautical Society ; AIAA/AAS Astrodynamics Specialist Conference & Exhibit <2006, Keystone, Colo.> ; AIAA paper number: AIAA-2006-6178 SP - 1 EP - 20 PB - American Institute of Aeronautics and Astronautics CY - Reston, Va. ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis T2 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit N2 - Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters. KW - Solar Sail KW - Asteroid Deflection KW - Planetary Protection KW - Trajectory Optimization Y1 - 2006 U6 - http://dx.doi.org/10.2514/6.2006-6178 N1 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21 August 2006 - 24 August 2006, Keystone, Colorado(USA). SP - 1 EP - 20 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Head-on impact deflection of NEAs: a case study for 99942 Apophis T2 - Planetary Defense Conference 2007 N2 - Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value Y1 - 2007 N1 - Planetary Defense Conference 2007, Wahington D.C., USA, 05-08 March 2007 SP - 1 EP - 12 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Konstantinidis, K. A1 - Forstner, R. T1 - Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice T2 - 63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3) Y1 - 2012 SN - 978-1-62276-979-7 SP - 1756 EP - 1766 PB - Curran CY - Red Hook, NY ER - TY - JOUR A1 - Dachwald, Bernd A1 - Carnelli, Ian A1 - Vasile, Massimiliano T1 - Evolutionary Neurocontrol: A Novel Method for Low-Thrust Gravity-Assist Trajectory Optimization / Carnelli, Ian ; Dachwald, Bernd ; Vasile, Massimiliano JF - Journal of guidance control and dynamics. 32 (2009), H. 2 Y1 - 2009 SN - 0731-5090 SP - 616 EP - 625 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Dachwald, Bernd A1 - Carnelli, I. A1 - Vasile, M. T1 - Low-Thrust Gravity Assist Trajectory Optimization Using Evolutionary Neurocontrollers / I. Carnelli ; B. Dachwald ; M. Vasile ... JF - Astrodynamics 2005 : proceedings of the AAS/AIAA astrodynamics conference held August 7 - 11, 2005, South Lake Tahoe, California / ed. by Bobby G. Williams. - Pt. 3. - (Advances in the astronautical sciences ; 123,3) Y1 - 2006 SN - 0-87703-527-X N1 - Astrodynamics Conference <2005, South Lake Tahoe, Calif.> ; American Astronautical Society ; Number: AAS-05-374 SP - 1911 EP - 1928 PB - Univelt CY - San Diego, Calif. ER -