TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Dahmen, Markus A1 - Keusgen, Michael A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes JF - Frontiers in Chemistry N2 - Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes. Y1 - 2018 U6 - http://dx.doi.org/10.3389/fchem.2018.00284 IS - 6 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Toward an immobilization method for spore-based biosensors in oxidative environment JF - Electrochimica Acta Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.electacta.2019.01.148 VL - 302 SP - 394 EP - 401 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Takenaga, Shoko A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Öhlschläger, Peter A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis–Menten-like kinetics for cell culturing JF - Physica status solidi A : Applications and materials science N2 - The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17–200 mM) follows a Michaelis–Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330464 SN - 1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1410 EP - 1415 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Oberländer, Jan A1 - Bromm, Alexander A1 - Wendeler, Luisa A1 - Iken, Heiko A1 - Palomar Duran, Marlena A1 - Greeff, Anton A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines JF - Physica status solidi (a) N2 - Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431900 SN - 1862-6319 VL - 212 IS - 6 SP - 1299 EP - 1305 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Arzdorf, M. A1 - Mulchandani, P. A1 - Chen, W. A1 - Mulchandani, A. T1 - Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: Fundamentals studies and aspects of development JF - Sensors. 3 (2003), H. 6 Y1 - 2003 SN - 1424-8220 SP - 119 EP - 127 ER - TY - JOUR A1 - Molinnus, Denise A1 - Drinic, Aleksander A1 - Iken, Heiko A1 - Kröger, Nadja A1 - Zinser, Max A1 - Smeets, Ralf A1 - Köpf, Marius A1 - Kopp, Alexander A1 - Schöning, Michael Josef T1 - Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk JF - Biosensors and Bioelectronics Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.bios.2021.113204 SN - 0956-5663 VL - 183 IS - Art. 113204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, Hanno A1 - Flörke, Rudolf A1 - Näther, Niko A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2) JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1351 EP - 1356 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suso, Henri-Pierre A1 - Rysstad, Gunnar A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes JF - Physica status solidi (a) N2 - A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. KW - calorimetric gas sensor;hydrogen peroxide;wireless sensor system Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200920 SN - 1862-6319 VL - 210 IS - 5 SP - 877 EP - 883 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Buniatyan, V. V. A1 - Wagner, Torsten A1 - Miamoto, K. A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk JF - Sensor and Actuators B: Chemical N2 - The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.01.047 SN - 0925-4005 IS - 244 SP - 1071 EP - 1079 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER -