TY - CHAP A1 - Platen, Johannes A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Microstructured Nanostructures – nanostructuring by means of conventional photolithography and layer-expansion technique N2 - A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, “fluidic-channel”-, “cantilever”- and meander-type structures. KW - Biosensor KW - Nanostructuring KW - layer expansion KW - pattern-size reduction KW - self-aligned patterning Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1477 ER - TY - CHAP A1 - Tymecki, Lukasz A1 - Glab, Stanislaw A1 - Koncki, Robert T1 - Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology N2 - Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used. KW - Biosensor KW - Potentiometry KW - thick-film technology KW - screen-printing KW - ion-selective electrodes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1506 ER - TY - CHAP A1 - Chaiyboun, Ali A1 - Traute, Rüdiger A1 - Kiesewetter, Olaf A1 - Ahlers, Simon A1 - Müller, Gerhard A1 - Doll, Theodor T1 - Modular analytical multicomponent analysis in gas sensor arrays N2 - A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line. KW - Biosensor KW - Main sensitivity KW - cross sensitivity KW - matrix method KW - gas sensor array KW - modelling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1358 ER - TY - CHAP A1 - Bukhari, Syed Faisal Ahmed A1 - Yang, Wuqiang T1 - Multi-interface level sensors and new development in monitoring and control of oil separators N2 - In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed. KW - Biosensor KW - Level sensor KW - multi-interface measurement KW - electrical capacitance tomography KW - ECT Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1498 ER - TY - CHAP A1 - Arida, Hassan A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations N2 - A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors. KW - Biosensor KW - Heavy metal detection KW - thin-film microsensors KW - organic PVC membranes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1545 ER - TY - CHAP A1 - Pijanowska, Dorota G. A1 - Remiszewska, Elzbieta T1 - pH-based detection of phenylalnine by potentiometric and colorimetric methods N2 - In this paper, methods of sample preparation for potentiometric measurement of phenylalanine are presented. Basing on the spectrophotometric measurements of phenylalanine, the concentrations of reagents of the enzymatic reaction (10 mM L-Phe, 0,4 mM NAD+, 2U L-PheDH) were determined. Then, the absorption spectrum of the reaction product, NADH, was monitored (maximum peak at 340 nm). The results obtained by the spectrophotometric method were compared with the results obtained by the colourimetry, using pH indicators. The above-mentioned two methods will be used as references for potentiometric measurements of phenylalanine concentration. KW - Biosensor KW - Phenylalanine determination KW - enzymatic methods KW - pH-based biosensing Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1536 ER - TY - CHAP A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Preface of the Special Issue of I3S 2005 in Jülich (Germany) N2 - International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220 KW - Biosensor KW - I3S 2005 KW - International Symposium on Sensor Science Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1365 ER - TY - CHAP A1 - Mirmohseni, Abdolreza A1 - Rostamizadeh, Kobra T1 - Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds N2 - Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l-1. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds. KW - Biosensor KW - Quartz crystal nanobalance (QCN) KW - BTEX compounds KW - principal component Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1434 ER - TY - CHAP A1 - Sakthivel, Mariappan A1 - Weppner, Werner T1 - Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method N2 - A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX. KW - Biosensor KW - Hydrogen sensor KW - amperometric sensor KW - porous Pt electrode KW - chemical reduction method Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1399 ER - TY - CHAP A1 - Barek, Jiri A1 - Fischer, Jan A1 - Navratil, Tomas A1 - Peckova, Karolina A1 - Yosypchuk, Bogdan T1 - Silver solid amalgam electrodes as sensors for chemical carcinogens N2 - The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte. KW - Biosensor KW - Solid amalgam electrodes KW - voltammetry KW - carcinogens KW - 3-nitrofluoranthene KW - Ostazine Orange Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1554 ER -